DISCOVER THE FUTURE OF GANODERMA CARE

STREPTOMYCES BIOCONTROL:
NATURE'S SELF DEFENCE
AGAINST GANODERMA.

COMPANY BACKGROUND

WHO WE ARE

A pioneering biotech firm focused on research-driven solutions that promote sustainability and resilience in agriculture

OUR MISSION

To be a global leader in sustainable agriculture, transforming the way crops are protected through innovative biological solutions.

OUR APPROACH

Driven by science and guided by sustainability, our solutions are built on cutting-edge research and a strong belief in environmental stewardship

actinoPLUS

Streptomyces Bio-Kontrol: Membuka Pertahanan Alam Melawan Ganode Streptomyces Bio-Control: Unlocking Nature's Self Defense Against Ganor

- Ejen Bio-Kawalan untuk Pencegahan Berkesan Terhadap Penyakit Ganoderma dalam Pokok Sawit (dibuktikan secara saintifik melalui ujian In-Vitro, Ujian Nurseri & Penilaian Lapangan)
 - Bio-Control Agent for Effective Prevention Against Ganoderma Disease in O. Palm (scientifically proven via In-Vitro tests, Nursery Trials & Field Evaluations)
- Bertindak sebagai Bio-Stimulan untuk meningkatkan pertumbuhan vegetatif pokok sawit dengan menggalakkan perkembangan akar & kekuatan keseluruhan
- Acts as Bio-Stimulant to enhance vegetative growth of palm by promoting root development & overall plant vigor.
- Berfungsi sebagai Baja Bio dengan menyumbang kepada penetapan nitrogen, penguraian bahan organik dalam tanah, membebaskan nutrien dan memperkayakan tanah dengan kandungan organik.
 - Functions as Bio-Fertilizer by contributing to the nitrogen fixation, decomposition of organic matter in the soil, releasing nutrients and enriching the soil with organic content.

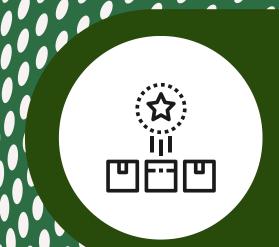
- Elakkan actinoPLUS daripada bersentuh dengan baja kimia lain dengan cara melapiskan dengan tanah
- Tiakkan daripada terdedah kepada cahaya matahari Selection distribution 2 JAM SEBELUM ATAU ELEPAS penyiraman anak benih
- Pan actinoPLUS di tempat yang sejuk dan kering
- secara berasingan dan disarankan pada 2 belum atau 2 minggu selepas aplikasi

Jointly developed with:

Dibangunkan Bersamu


- 1. Avoid direct contact of actinoPLUS with other chemis fertilizers by subsoil layering
- 2. Avoid direct exposure to sunlight
- 3. Application must be done 2 HOURS BEFORE OR APTE
- 4. Keep actinoPLUS in dry and cool place
- no second becaring and day disgraphy and second place

 Applications with other fertilizer, pesticing or fundamental and second place of fundamental and second must be done separately. It is advised to apply it 2 weeks before or 2 weeks after using actinoPLUS



Contains Streptomyces

a naturally occuring soil bacteria which acts as an antagonist against Ganoderma

Functions

Bio-Control Bio Fertlizer **Bio Stimulant**

Product Composition

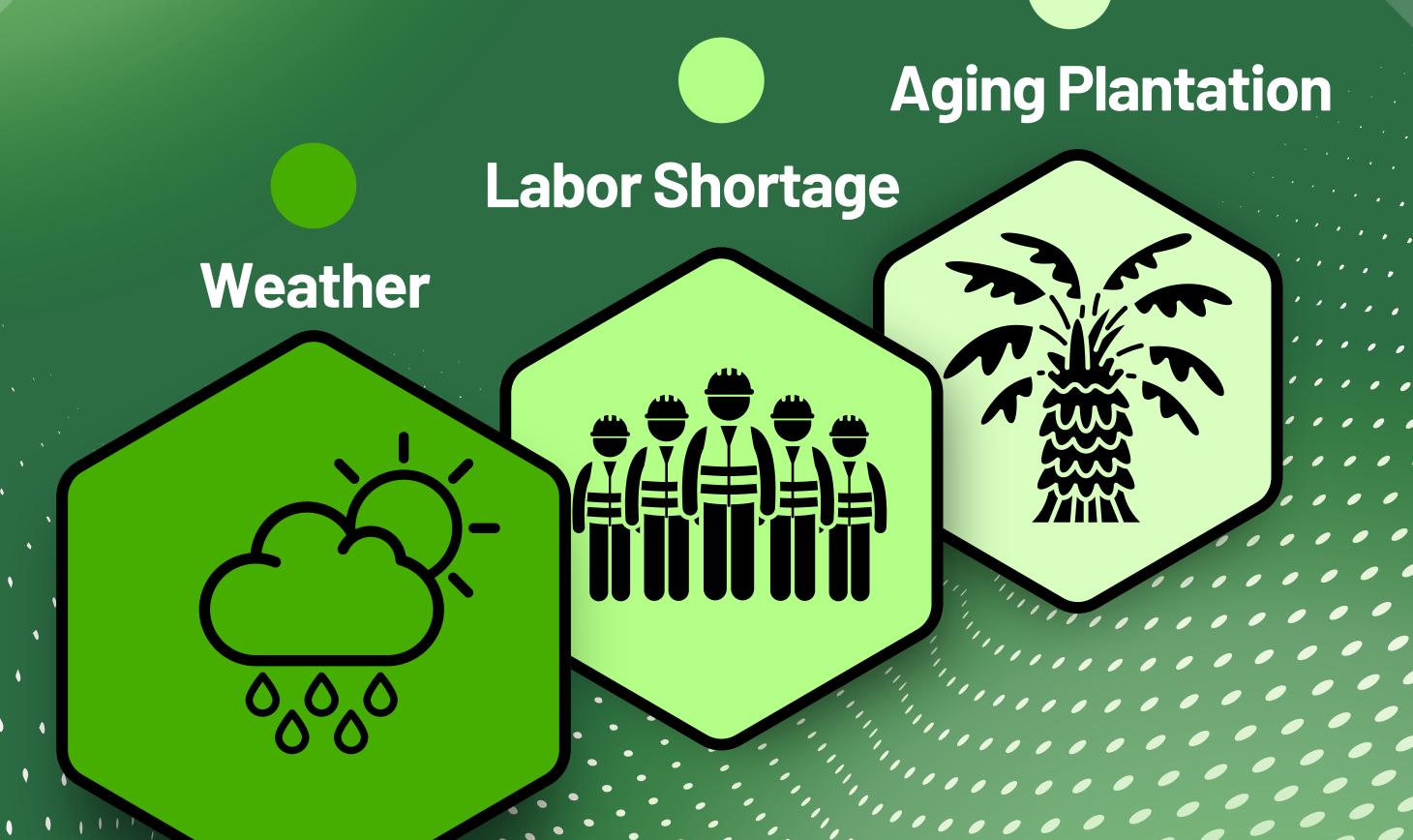
300 Grams per Sachet Using Vermiculite as a carrier **Granular Form**

PRODUCT BACKGROUND

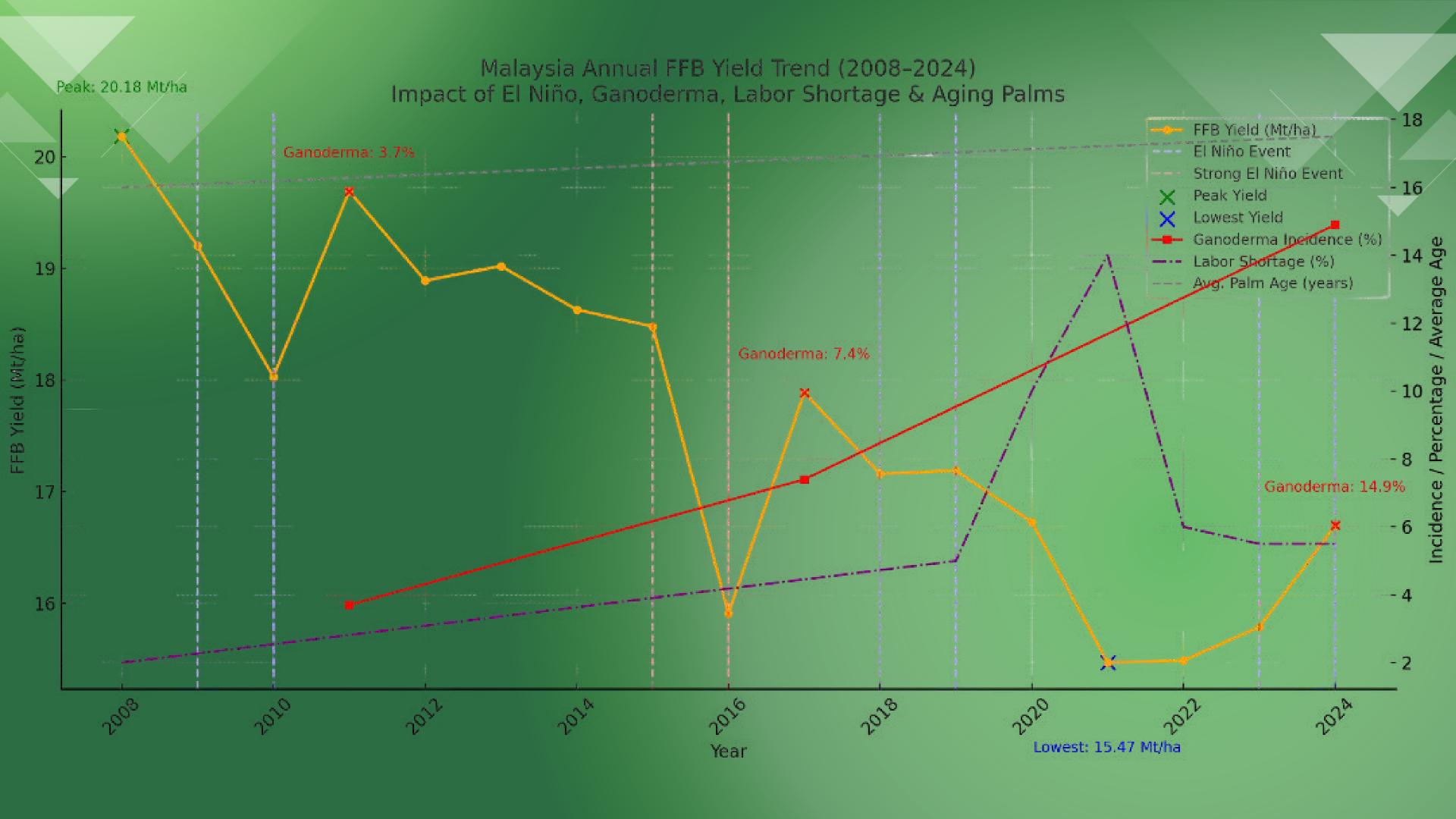
COLLABORATORS

GRANTS

RECOGNITIONS



MALAYSIA'S DECLINING YIELD TREND



Common Yield Decline Factors

However, there's a critical fourth dimension that is increasingly exerting silent pressure on productivity — yet remains underrepresented in strategic

discourse ** **6666666** 2017 000000 2011 1996 \$\$\$\$\$\$\$ (2) (2) (2) (2) (3) 7.6% 1.5% 3.7% (150,000 HA) (60,000 HA)(310,000 HA)(615,000 HA)

Why is the average rate of infection increasing?

Delayed Symptoms

- Asymptomatic Period
- Late Presentation

- Time Consuming
- Costly
- Accessibility
- Expertise

Environmental Effect

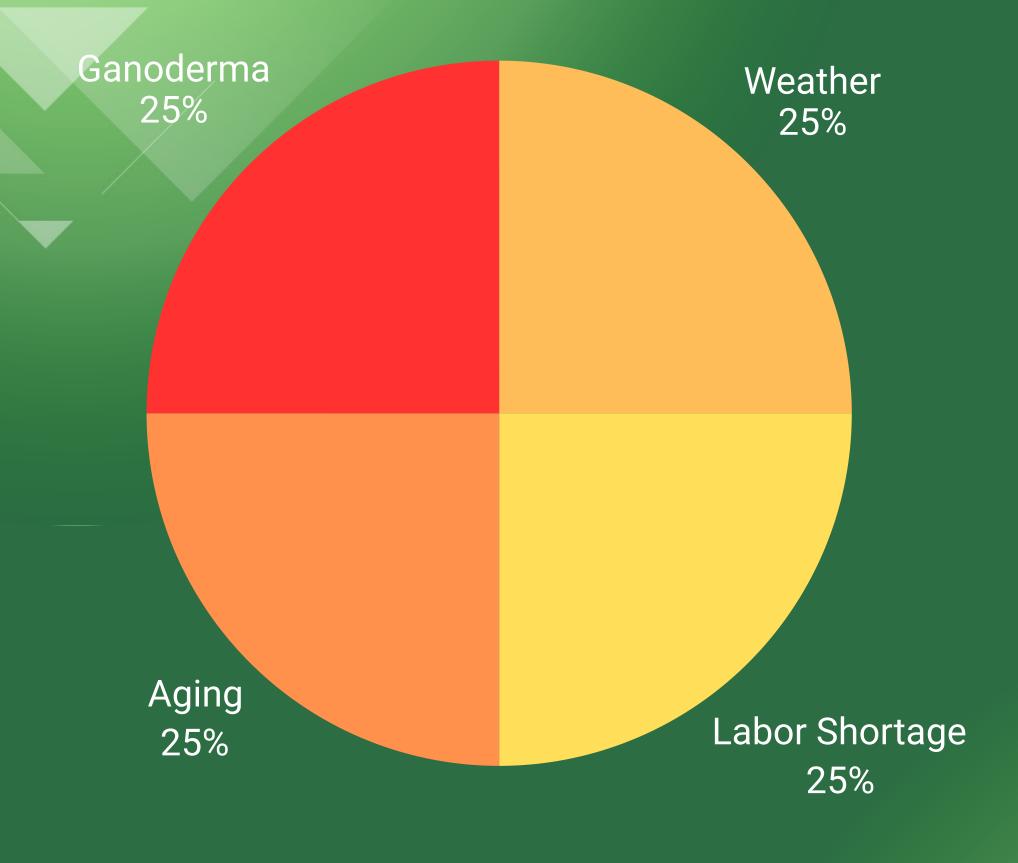
- Green House Effect
- Humidity

- Symptomatic Focus
 - Curative Measures
- Residual Inoculum
- Chemical Residue
- Resistance Strain

Soil Quality

- Acidity
- Fertility
- Microbial Inbalance

Genetic UniformityRapid Mutation


Monoculture Practice

Additional Factors

 Reluctance to adopt Bio Control measures into Integrated pest management

"MULTIPLE PRESSURES CONVERGING AND QUIETLY ERODING PERFORMANCE, SEASON AFTER SEASON."

Think of oil palm as a professional athlete

As it ages, its natural performance begins to decline — that's expected.

But now imagine this athlete also suffering from an untreated illness (Ganoderma), trying to train without proper nutrition (weather), and lacking a proper coach or support team (labour shortage) to guide and condition it.

Even the most talented athlete can't win races under those conditions.

TREATMENT OVERVIEW

Current Control Strategies

CURATIVE

Main Goal
Prolong palm lifespan

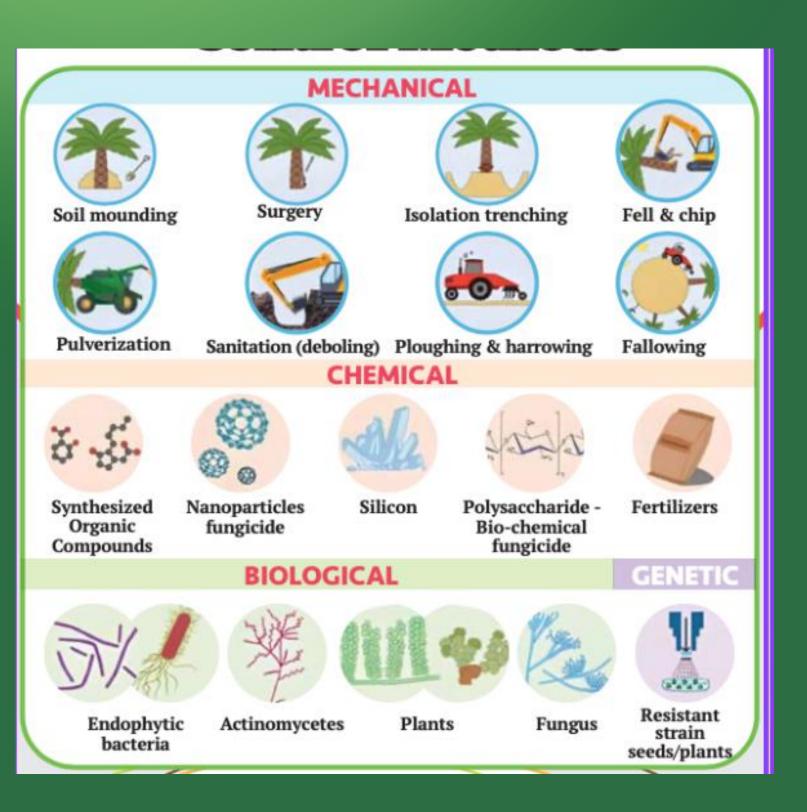
Effectiveness
Temporary relief

Application
After symptoms appear

ROI
Lower – yield continues to decline

PREVENTIVE

Main Goal
Prevent infection before it starts


Effectiveness

Long-term protection and reduced risk

Application
From the nursery stage onward

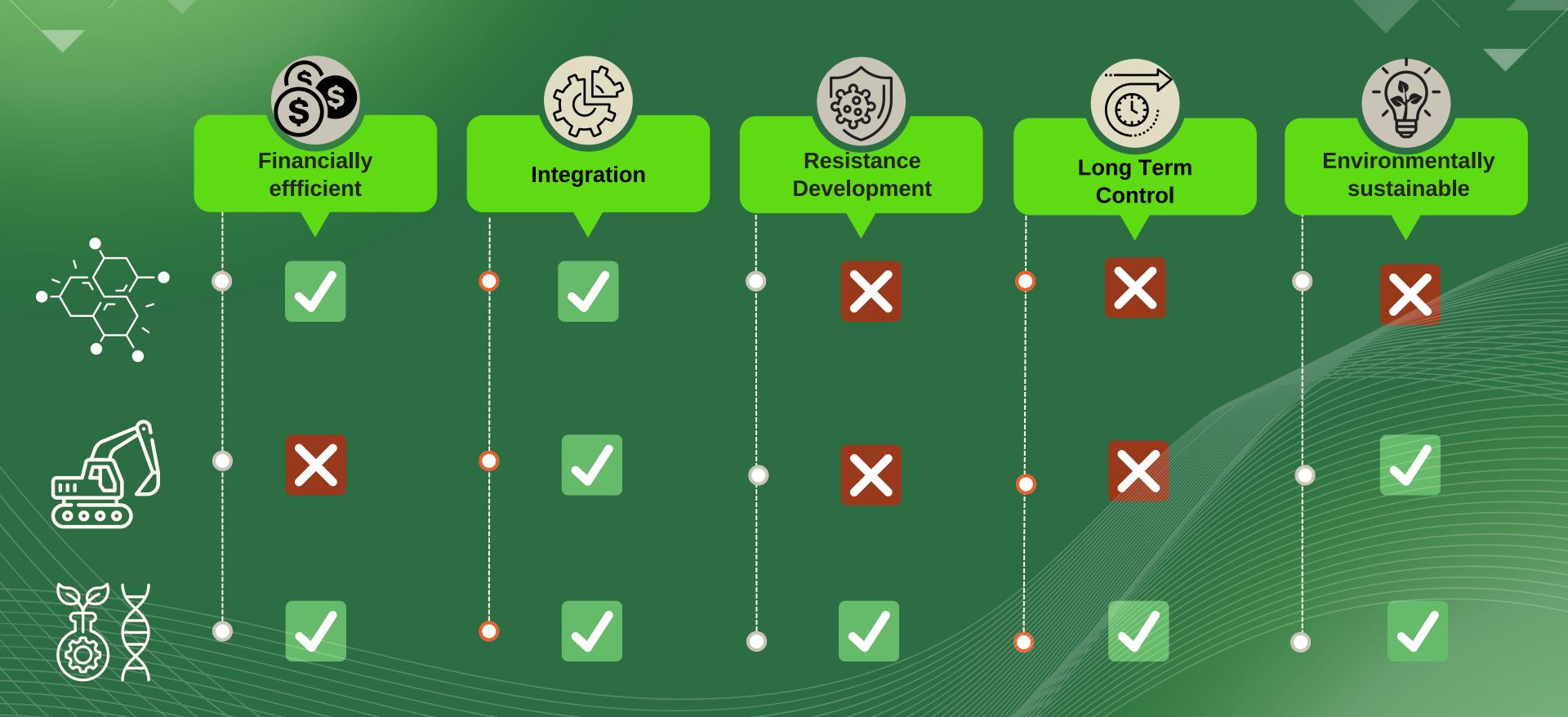
ROI
Higher – maintains palm health and yield potentia

Treatment Landscape Overview

MECHANICAL Sanitation methods alone only delays infection

CHEMICAL

2 Short Term Solution but environmentally degrading


GENETICS

Efforts to create a resistant seedling highly complex, costly & time consuming

BIOLOGICAL

BCA is a better alternative for disease management in the field instead of chemical fungicides

Comparisons of Control Strategies

Integrated Treatment Approach

Real-time Monitoring

- Detection (census)of potential attacksbefore replanting
- Regular reporting

Sanitation @ Existing Plantation

- Picking fruiting body of Ganoderma
- Surgery of diseased tissue
- Removing Infected Palms & Deboling

Sanitation @ Replanting

- Sanitation of inoculum source
- Remove as much infected stems, boles and roots

Preventive Control

The use of bio-control agents to suppress pathogen

How does Streptomyces GanoSA1 work as a bio-control agent?

Colonize root rhizosphere

Siderophores

Good competitor for nutrients -Fast release of iron chelators (siderophore) for uptake of irons

Induced Systemic Resistance

pathogenic related proteins - induces the production of β -glucanase, POX, PPO and PAL within the plant

Enhancing plant health and resistance

improved phosphorus availability

Hydrolytic Enzymes

Glucanase, Chitanase, Lipase

Secondary Metabolites

Antibiotic Production, Antifungal Compounds

EFFECTIVENESS EVALUATION

Lab Tests - In- Vitro Screening

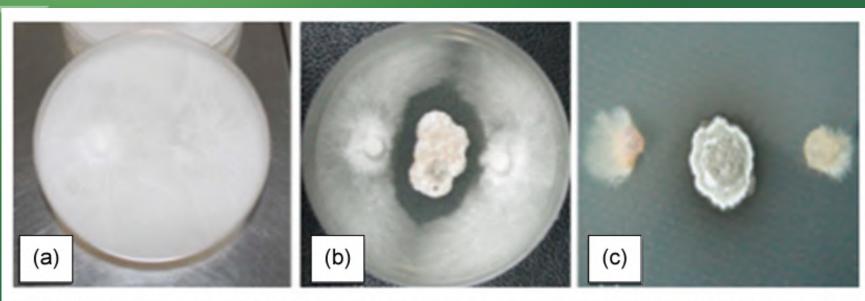
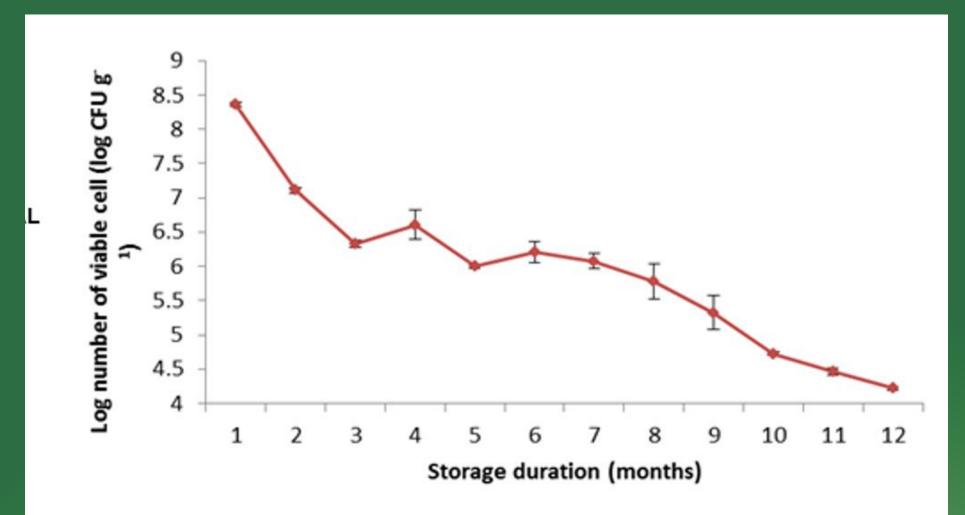



Figure 3. In vitro assay plates of actinomycetes isolates against G. boninense; a) control plate of G. boninense, b) Positive inhibition observed between actinomycetes during in vitro assay and, c) Inhibition of G. boninense by Streptomyces nigrogriseolus GanoSA1 (Shariffah Muzaimah et al., 2020).

THE EFFECT OF Streptomyces GanoSA1 POWDER ON PERCENT INHIBITION OF RADIAL GROWTH OF Ganoderma boninense

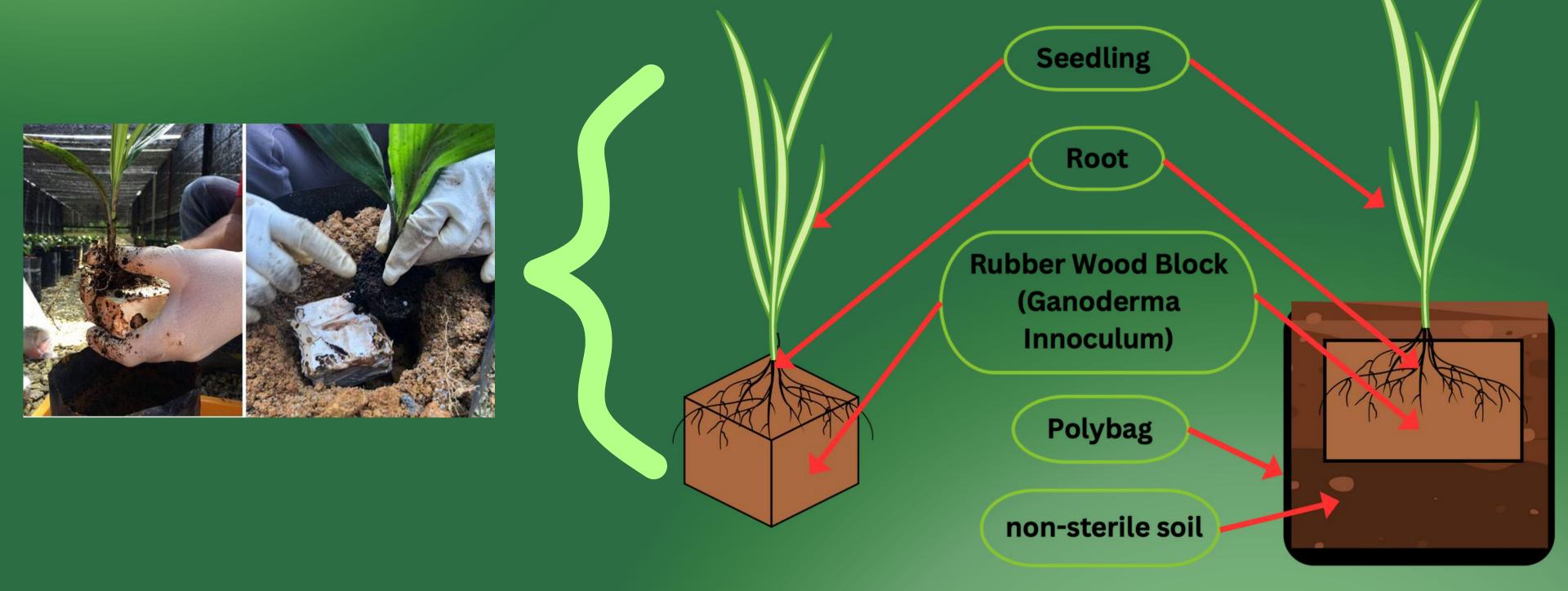
Streptomyces GanoSA1	POWDER		9	Storag	e time	(mon	ths)	
against Ganoderma bonine	ense	0	2	4	6	8	10	12
D	Trial 1	100	100	100	88.6	83.8	74.1	54.3
Percentage Inhibition of Radial Growth (PIRG %)	Trial 2	100	100	100	85.1	84.8	75.0	65.7
	Trial 3	100	100	100	86.5	80	73.33	57.1

The average number of viable Streptomyces GanoSA1 in vermiculite: biochar powder formulation during storage.

Lab Tests - Bio-Chemical Identification

Table 1Morphological and physiological characteristics of *Streptomyces nigrogriseolus*GanoSA1 after 7 days of incubation.

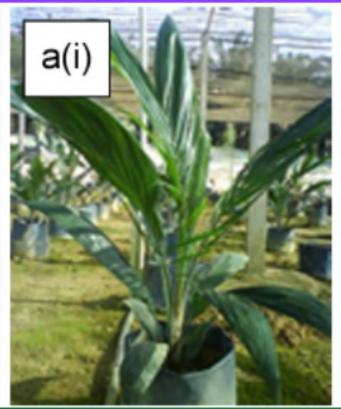
Morphological charac	cteristic			
	Growth of Streptomyces nigrogriseolus GanoSA1	Reverse color	Diffusible pigment	Spore formation
	Aerial surface color			
YME	Light-bluish gray	Brown	_	++
ISP3	Gray	Gray	-	++
ISP4	Light gray	Brown	_	+
ISP5	White	Brown	_	±
Spore formation	Rectiflexibiles/ Retinaculiaperti			
Physiological chara	cteristic			
⇒ β-1,3-glucanase	+			
➤ Chitinase	+			
➤ Cellulase	5 — 8			
➤ Lipase	+			
➤ Siderophores	+			
➤ Phosphate	+			
solubilization				
➤ Indole acetic	-			
acid				


Temperature effect			
> 28 °C	++		
> 30 °C	++		
> 40 °C	+		
> 50 °C	9—8		
pН			
→ 4.5	++		
> 5.5	++		
> 6.5	++		
> 7.5	++		
> 8.5	++		
NaCl			
> 2%	++		
> 4%	++		
> 6%	++		
> 8%	+		
> 10%	=		
> 12%			
Pesticides	Pesticide strength		
	(%)		
	1	0.5	0.25
Glyphosate isopropylamine	±	+	++
> Paraquat dichloride	_	-	土
Glufosinate ammonium	_	_	-

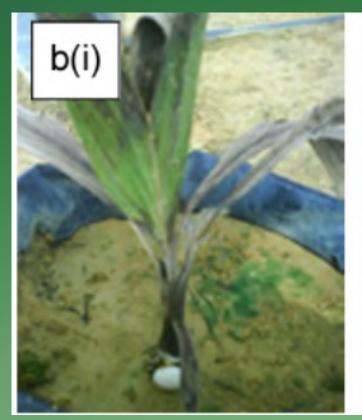
Streptomyces growth: (-) no growth; (\pm) little growth with no aerial mycelia; (+) little growth; (++) medium growth.

NURSERY TRIALS

MPOB-UKM Research Station, Bangi, Selangor

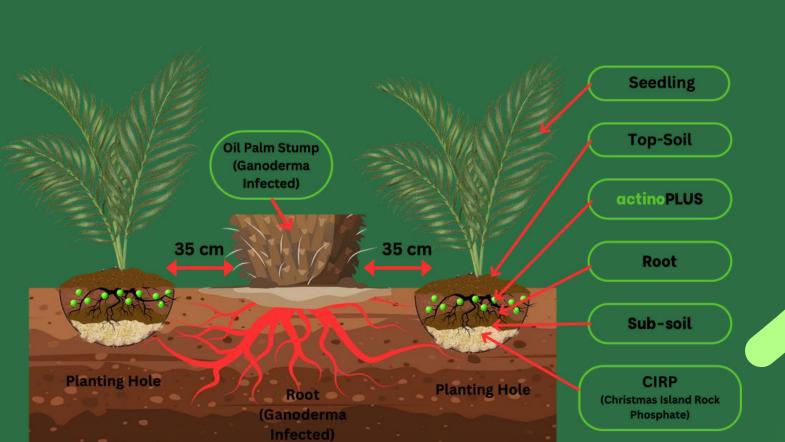

NURSERY TRIALS

MPOB-UKM Research Station, Bangi, Selangor


Table 2

The effect of *Streptomyces nigrogriseolus* GanoSA1 on disease and vegetative growth of oil palm.

Treatment	Control	S. nigrogriseolus GanoSA1 powder
Disease assessment		
Disease incidence (%)	91.11 ± 4.29^{a}	$48.89 \pm 7.54^{\mathrm{b}}$
Severity of foliar symptoms (%)	83.11 ± 3.29	$42.45 \pm 5.57^{\mathrm{b}}$
Dead seedlings (%)	$80.00 \pm 6.03^{\rm a}$	$31.11\pm6.98^{\mathrm{b}}$
Disease severity (external, %)	$75.00 \pm 2.79^{\mathrm{a}}$	$31.11 \pm 1.57^{ m b}$
Disease severity (internal, %)	88.89 ± 2.91^a	$43.32 \pm 4.94^{\mathrm{b}}$
AUDPC (unit ²)	151.94 \pm	$52.22 \pm 7.03^{\mathrm{b}}$
	24.07 ^a	
Disease reduction (%)	(40)	63.01 ± 4.99^{a}
Vegetative growth		
Number of fronds	$11.67\pm0.28^{\mathrm{a}}$	$13.278 \pm 0.38^{\mathrm{b}}$
Plant height (cm)	106.44 ± 2.32^a	$116.27 \pm 2.25^{\mathrm{b}}$
Stem girth (cm)	50.37 ± 1.53^a	58.73 ± 1.35^{b} 11–18%
Root mass (g)	130.58 ± 1.1^{a}	$165.52 \pm 0.67^{\mathrm{b}}$
Leaf mass (g)	255.59 ± 1.78^{a}	272.6 ± 3.35^{a}



FIELD EVALUATIONS

MPOB Teluk Intan Research Station, Perak

Seedling Baiting Technique (SBT)

EFFECT OF Streptomyces GanoSA1 POWDER IN CONTROLLING GANODERMA DISEASE IN OIL PALM, 36 MONTHS AFTER PLANTING (MAP) USING SEEDLING BAITING TECHNIQUE

		Palms dea	ad due to G	anoderma	
Treatments		infection (%)			
		12 MAP	24 MAP	36 MAP	
T1	- Untreated seedlings (control)	8 ^a	20 ^a	75.0ª	
T2	- Seedlings treated with Streptomyces GanoSA1	O _p	3 ^b	6.6 ^b	

FIELD EVALUATIONS

MPOB Teluk Intan Research Station, Perak

SKIM TANAM SEMULA SAWIT PEKEBUN KECIL (TSSPK)

2014

EMBIO® actinoPLUS launched by MOSTI Minister @ MPOB Transfer of Technology Exhibition (TOT 2014).

2015 - 2018

Supplied approximately
450K Sachets for 1500
Smallholders, covering
3000 Hectares in 7 States

Approved by Jawatankuasa Pemandu Minyak Sawit & MOF for **RM 3.6 Million**

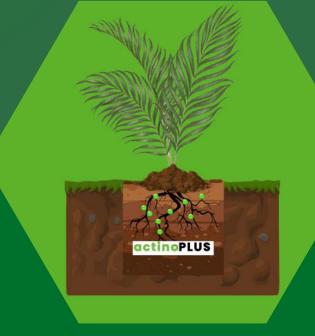
Signed Research and Commercialization Agreement On Actinomycete with MPOB

a return of **3.8 times** the amount of sales revenue

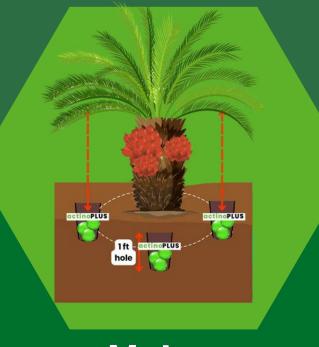
3 years after replanting, **0% disease incidence**in areas applied with
ActinoPlus

Areas replanted without
ActinoPlus experiencing
3-5% disease incidence
reallygreatsite.com

APPLICATION GUIDE


PRODUCT APPLICATION MANUAL FOR OPTIMAL FIELD PERFORMANCE

>>>>>>

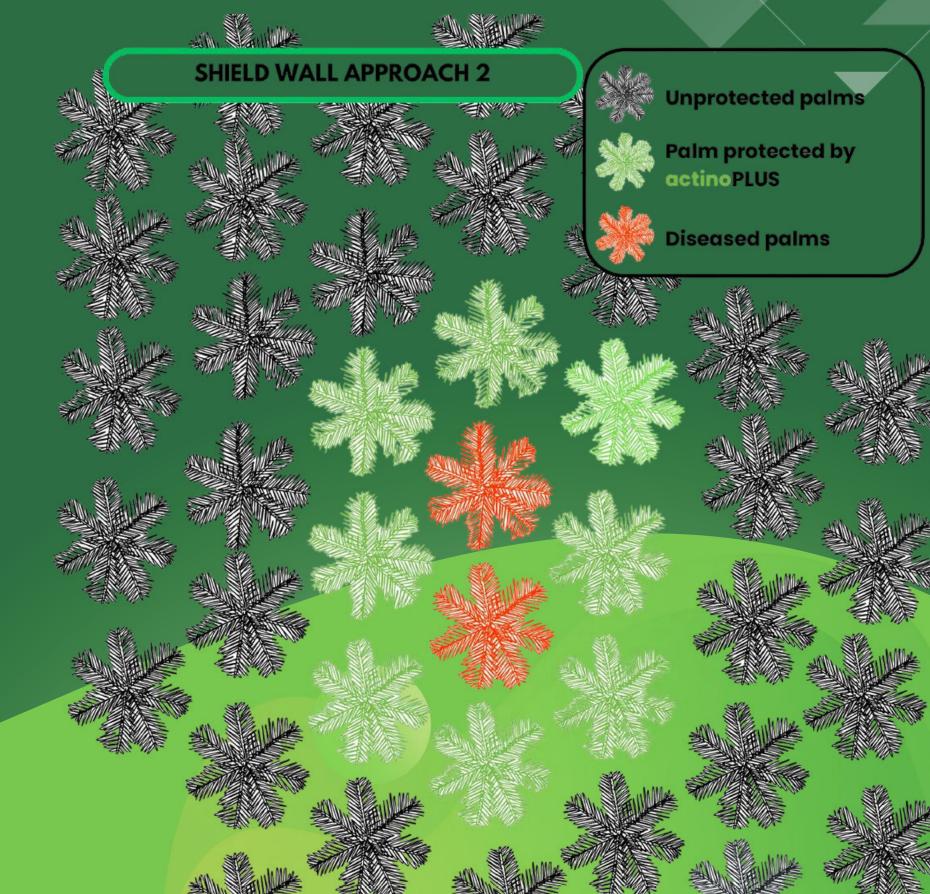

itaisery

150g @ every 3 months intervals

Immature

300g @ Planting Hole

<<<<

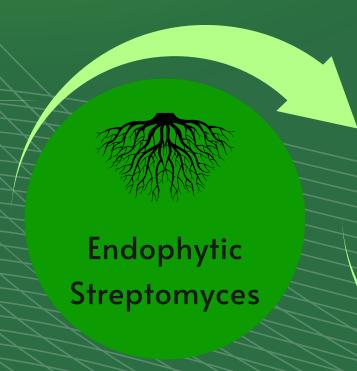

Mature

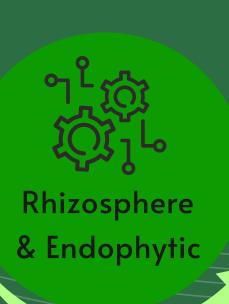
600g @ Subsoil

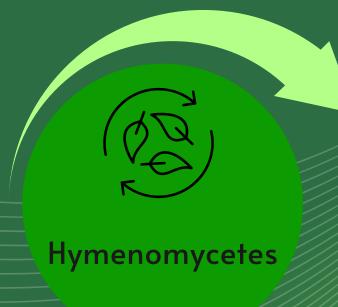
STAGE	Nursery	Immature			Mat	ture				
PALM AGE	3 months	Planting Hole	4th Year	7th year	10th Year	13th Year	16th Year	19th Year	8 Applications	
DOSE	150g	300g	600g	600g	600g	600g	600g	600g	4KG	

SHIELD WALL APPROACH

CURRENT DEMOPLOTS







Upcoming Products

THANKYOU

PASCAL BIOTECH SDN BHD

	Nursery Trial				
Measurement	Vegetative Growth	Ganoderma Disease Control			
Location	MPOB-UKM Research Station, Bangi, Selangor				
Profile	Nursery conditions under a shade	ed area with 30 per cent light			
	absorbance.	AV.			
Duration	9 Ma	onths			
Planting material		DxP seedlings			
Number of Seedlings	Two treatments were evaluated	with 30 seedlings per treatment			
Inoculation Method	Actinomycetes powder was	Actinomycetes powder was			
	applied through soil mixing.	applied through soil mixing.			
	No Ganoderma inoculation.	Ganoderma was inoculated			
		through the rubber wood block			
		RWB) sitting technique.			
Design		BD			
Dosages	Pretreatment: 50 g/seedling	Pretreatment: 50 g/seedling			
	Booster (7 days after	Booster (7 days after			
	pretreatment): 50g/seedling	pretreatment): 50g/seedling			
Assessment	No. of fronds production,	Disease incidence (DI), Severity			
Parameter	seedling height and width, leaf	of foliar symptoms (SFS), Dead			
	areas, SPAD for chlorophyll	seedlings (DS), Disease			
	reading	Severity Index (DSI, external			
Data callegian	Mandali abaanistan an dha	and internal)			
Data collection	Monthly observation on the	Monthly observation of the			
	vegetative growth	external symptoms.			
		Internal symptoms were			
		observed through cross-section			
		at the end of the experiment			
Results	Rtw 11-18% enhancement	65.2% disease reduction			
Results	Btw 11-18% enhancement	05.2% disease reduction			

	Field Trial				
Plot	Existing planting area	Replanting area			
Location	MPOB Teluk Intan Research Station, Perak	MPOB Teluk Intan Research Station, Perak			
Profile	25-year-old palm (severely infected & peat)	25-year-old palm (severely infected >40%, peat soil & going into 2 nd Generation			
Duration	36 Months	9 Years (still ongoing)			
Inoculation Method	Seedling Baiting Technique	Soil mixing at the planting hole			
Number of Seedlings	Two treatments were evaluated with 30 seedlings per treatment	A replanting of 1260 Oil Palms seedlings. 1001 seedlings were treated whilst the remaining 259 seedlings were considered the control			
Dosages	Pretreatment: 50g/seedling at 4- , 6- and 9-month-old) Planting hole: 250 g/hole	Pretreatment: 50g/seedling at 4- , 6- and 9-month-old) Planting hole: 250 g/hole			
	approximately 35 cm away from the infected stump				
Assessment Parameter	Disease incidence (absent or present of infection based on external symptoms)	Disease incidence (absent or present of infection based on external symptoms)			
Data collection	3-monthly intervals for 36 months.	Yearly (annual census)			
Results	75 per cent of untreated seedlings were dead compared 6.6% in treated	On the 3rd year after replanting, untreated seedlings started showing signs of infection compared to 6th year for the treated palms.			