MPOB – SOPPOA R&D SEMINAR 2023

R&D PROGRESS ON AIR POLLUTION CONTROL (APC) FOR EFB COMBUSTION AND ADVANCES OF POME TREATMENT

NASRIN ABU BAKAR, NU'MAN ABDUL HADI & NOR FAIZAH JAILANI ENGINEERING & PROCESSING RESEARCH DIVISION

MPOB

MALAYSIAN PALM OIL E

MINISTRY OF PLANTATION AND COMMODITIES

PRESENTATION OUTLINE

INTRODUCTION

• EFB & POME – Current scenario

APC FOR EFB COMBUSTION

- EFB used as boiler fuel
- Alternatives to EFB disposal

ADVANCES OF POME TREATMENT

- Current research activities
- Alternatives to POME treatment

INTRODUCTION

- EFB & POME the largest solid and liquid byproducts (wastes) from POMs
- Annual production rate : > 21 million tonnes EFB and >60 million m³ POME
- Disposal & treatment long overdue issues for millers (without plantations)
- Recent stringent regulations imposed by the DOE
- Regulation obligation & compliance with no/ direct economic return

MAJOR ISSUES ON ENVIRONMENTAL REGULATIONS COMPLIANCE OF PALM OIL MILLS

FINAL DISCHARGE LIMITS OF PALM OIL MILL EFFLUENT (POME)

- BOD 20/50 ppm sensitive areas
- Proposed new monitoring parameters by the DOE odour & color

PARTICULATE EMISSIONS FROM PALM OIL MILL BIOMASS BOILERS

 Clean Air Regulation 2014 (CAR 2014) - particulate emissions < 150 mg/Nm³ & commitment to install air pollution control system (APCs)

WASTE MANAGEMENT OF EMPTY FRUIT BUNCHES

- Particulate emissions from EFB incinerator to comply to CAR 2014
- Garis Panduan Pelan Pengurusan Tandan Kosong Sawit (2021) leachate issue

ALAYSIAN PALM OIL BOARD

MINISTRY OF PLANTATION AND COMMODITIES

THE DOE'S DIRECTIVE ON EFB DISPOSAL

- EFB dumping is currently monitored by DOE through a guideline named "Garis Panduan Pelan Pengurusan Tandan Kosong Kelapa Sawit" (Bahagian Penguatkuasa Jabatan Alam Sekitar February 2021).
- The guideline recommends concrete flooring & roofing, perimeter drain & slump pit for leachate collection better management of EFB and ultimately prevent leaching of EFB to surrounding environment.
- Other method can be presented to the DOE encourage millers to discuss alternative-suitable and cost-effective method (to overcome the EFB leachate issue directly with the state DOE)

- EFB disposal via incinerators is totally banned by the DOE.
- It is still permitted provided that EFB incinerator is equipped with air pollution control (APC) with particulate emissions complied to CAR 2014 permitted limits
- Sarawak POMs were granted to operate the existing incinerators (without APC) by 31 Dec 2024
- Solution: to install APC vs alternative EFB disposal methods

ISSUES ON CURRENT EFB DISPOSAL METHODS

EFB MULCHING

- Applicable to the mills with plantations
- Logistic/ labour cost : RM 12 -15 / t EFB
- Annual cost RM 1.2 1.5 million/ year (45 54 t/hr POM)
- Limited impact to yield improvement ??

EFB INCINERATOR

- Basic design without any APC
- Slow burning for bunch ashes
- Air pollution white smokes
- Maintenance cost vs revenue from bunch ash sale?

EFB FIBRES AS BOILER FUEL – PRETREATMENT PROCESS

- A low-hanging fruit approach
- One single machine consists of press and cutter
- 2 stages process shredder and press
- Moisture content (41 43%)
- Size < 12 cm
- Additional income via SPO from EFB juice (~ 0.25% to FFB processed)
- Additional POME volume >10%

PRELIMINARY RESULTS OF ISOKINETIC SAMPLING

	EFB Power Plant	Mill A	Mill B	Mill C
APC	Multi-cyclone	Vorsep	Multi-cyclone + ESP	Multi-cyclone
Fuel used	100 % EFB	EFB + MF	EFB + MF + Biogas	EFB + MF + Biogas
Particulate emissions, mg/Nm ³	131.16	62 - 307*	79.6 - 90.6	604 - 606
CO ₂ , %	-	3.8	2.2	7.8
CO, ppm	-	133 – 1455	21.8 - 324	105
NOx,ppm	-	_	-	96
SOx, ppm	-	-	-	14

MALAYSIAN PALM OIL BOARD

BUNCH ASH QUALITY - EFB COMBUSTION

	BUNCH ASH	BOTTOM ASH	FLY ASH	BOTTOM ASH
Source	EFB incinerator	EFB boiler	EFB Boiler	EFB + Mesocarp fibre
P, %	0.66	0.95	2.29	1.88
К,%	36 - 50	20.52	17.74	17.02
Ca, %	9.53	4.49	11.70	5.87
Mg, %	1.58	2.07	5.71	2.76
Si, %	3.12	22.03	13.41	29.98

MINISTRY OF PLANTATION AND COMMODITIES

EFB INCINERATOR - POINTS TO CONSIDER

To design/ develop a new incinerator system

 Equipped with APC and basic devices (O₂ fan, auto deashing system etc) for controlled combustion

To use existing incinerator

- To retrofit with APC
- To channel white smoke to the boiler furnace/ APC system (Effect to the boiler??)

FUTURE WORKS

Gasifier system for EFB fibres

- To produce syngas for cofiring in biomass boiler
- Reduces palm biomass • facilitates particulate emission reduction

Development of EFB incinerator

- the Explores potential development of new incinerator design for EFB
- Requires EFB pretreatment

Special Task Force on Survey Related to Final Discharge of POME

- Establishment of 'Working Committee on Regulatory Issues on Environment' to conduct a continuous study and engagement with the stakeholders and the DOE. Progress so far:
 - i. Field Study Phase 1-3 (BOD 20) (2009 2011)
 - ii. Phase 4: Taskforce on Kinabatangan (BOD 20) (40 mills located in 3 main river basins) 2012 2016
 - iii. Taskforce on Colour: (7 mills with varied conditions) (2017 2019)
 - iv. Taskforce on Ammonia (ammonia issues in Johor) (2017 – 2019)
- Current effort (Beyond 2020): MPOB are currently dealing with (new proposed regulation): Environmental Quality (Prescribed Premises) (Crude Palm Oil Mill) Regulations 202X
- In-house R&D and collaboration with potential technology providers for new technology on BOD and colour removal

New proposed limit in Environmental Quality (Prescribed Premises) (Crude Palm Oil Mill) Regulations 202X

Proposed Parameter Limits by DOE for Discharge into Inland Watercourse & Land

i) Proposed Parameter Limits for Discharge into Inland Watercourse	Limits According to Perio	Limits According to Periods of Discharge		
Parameter, mg/L except for Temperature, pH and colo	our. Existing limit (1 Jan 1984)	Proposed limit (202X)		
Biochemical Oxygen Demand (BOD ₃) 3 days, 30°C	100 (20 – 50)*	20		
Suspended Solids	400	200		
Oil and Grease	50	5		
Ammoniacal Nitrogen	150	20		
Total Nitrogen	200	-		
рН	5.0 - 9.0	5.0 - 9.0		
Temperature, °C	45	45		
Colour, ADMI	-	100		
ii) Proposed Parameter Limits for Discharge on Land (Land application)				
Biochemical Oxygen Demand (BOD ₃) 3 days, 30°C	5,000**	2500		
	er BOD for Sabah. Swak & Johor **or other limits spec	cified by the Director General		

MINISTRY OF PLANTATION AND COMMODITIES

Sabah. Swak & Johor ^ or other limits specified by the Director General

www.mpob.go

MAJOR FINDINGS

ACTIVATED SLUDGE + CLARIFIER

< BOD 20 (60% compliance)

EXTENDED AERATION + SAND FILTER

Polishing Plant

MPOB

Aeration Tank

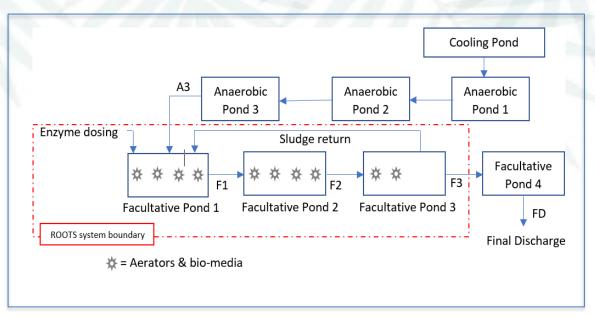
< BOD 20 (70% compliance)

< BOD 50 (100% compliance)

EXTENDED AERATION + STONE FILTER

EXTENDED AERATION + MEMBRANE UF

< BOD 50 (80% compliance)


MINISTRY OF PLANTATION AND COMMODITIES

ALAYSIAN PALM OIL BOARD

NEW TECHNOLOGY FOR POLLUTANT AND COLOUR REMOVAL

Enzymatic Turbulence Aeration Biological System (ROOTS)

- ROOTS[®] system consists of 3 main components namely enzyme treatment, static aerator network and medium for bacterial growth; has been duly installed at the Commercial 40 tph POM, Johor
- Inlet to ROOTS system: BOD >150 mg/L, SS>450 mg/L, AN>200 mg/L, O&G> 10, colour >2500 (after anaerobic pond)
- BOD 88% reduction (19 mg/L), Colour 67% (815 ADMI), SS – 86% (65 mg/L) O&G -85% (2 mg/L) and AN – 98% (4 mg/L)

Layout of ROOTS System

NEW TECHNOLOGY FOR POLLUTANT AND COLOUR REMOVAL

Activated Carbon Filtration System

Commercial Scale (50 m3 /hr , Mill at Kluang, Johor) – Commissioned in July 2023

Parameter	Final discharge pond	Aeration pond	Settling pond	discharge (after AC treatment)
рН	8.66	8.58	8.80	8.60
COD (mg L ⁻¹)	408	417	216	47
BOD (mg L ⁻¹)	63	52	33	ND (<2)
SS (mg L⁻¹)	132	59	70	24
Colour (ADMI)	1730	830	405	14
AN (mg L ⁻¹)	ND (<2)	ND (<2)	ND (<2)	ND (<2)

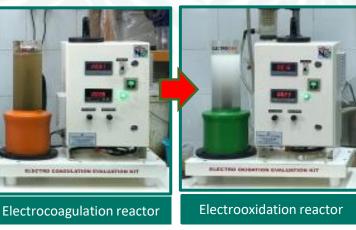
Cost to be considered:

- Activated carbon consumption
- Energy for aeration

MALAYSIAN PALM OIL BOARD

COLLABORATION ON COMMERCIAL SCALE OF PALM KERNEL SHELL-ACTIVATED CARBON FOR POME TREATMENT (MPOB-IOI GROUP)*

*Source: Zainal et al. (2023) MPOB PIPOC 2023

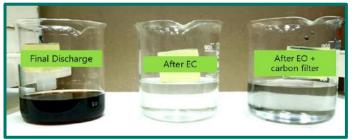


NEW TECHNOLOGY FOR POLLUTANT AND COLOUR REMOVAL

Hybrid Electrocoagulation & Electrooxidation Treatment System

- Hybrid Electrochemical technology through a combination of electrocoagulation (EC) and electrooxidation (EO) process to reduce/eliminate organics pollutant from the wastewater
- The technology has potential to produce nonpotable quality treated water that can be applied for mill processing or boiler feed water

2 L Desktop evaluation kit



Types of POME Samples Tested in 2-L Desktop Evaluation Kit and Its Characteristics

Parameter	Mixed Raw POME		Anaerobic treated POME		POME Final discharge	
	Before treatment	After EC-EO	Before treatment	After EC-EO	Before treatment	After EC-EO
рН	3.39	3.88	7.3	6.25	8.65	7.56
COD (mg L ⁻¹)	135,300	1239	15,300	206	1099	666
BOD (mg L ⁻¹)	60,992	12.93	528	12.42	35	10.44
SS (mg L ⁻¹)	53,400	40	3300	20	175	84
Colour (ADMI)	27,500	44	7175	24	3975	4
AN (mg L ⁻¹)	26	N.D	117	N.D	19	ND

Changes of POME colour throughout the treatment process for (a) raw POME; (b) anerobic treated POME; (c) Final discharge POME

*Cost to be considered: Electrode &

Collaborator Apex Environmental Industries

energy consumptions

www.mpob.gov.my

MAJOR FINDINGS & FUTURE WORKS

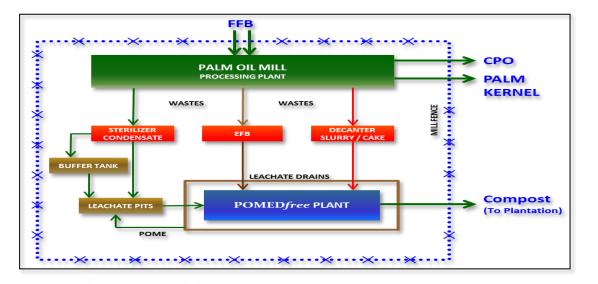
- Technologies are available to achieve BOD < 20 ppm but its consistency is a major challenge.
- Colour reduction has no correlation with BOD reduction
- Toxicity studies showed that POME samples with 20 < BOD < 100 mg/L and colour about 1000 ADMI are practically non-toxic.
- **Technology to reduce colour** for POME is **still immature** and higher cost.
- Proposed stringent limits are considerable and requires further engagement with stakeholders

METHANE AVOIDANCE TECHNOLOGIES & STRATEGIES

MITIGATION STRATEGIES :

MALAYSIAN PALM OIL BOARD

- **1.0 POME utilisation** biogas capture & composting of POME and EFB
- 2.0 **POME pretreatment** oil recovery and solid removal
- **3.0 POME elimination** via evaporation process
- 4.0 **Improved milling process** less-water consumption and POME generation



CO-COMPOSTING OF POME & EFB

Zero Discharge Technology for Palm Oil Mills (POMED free)*

- 100% Raw POME & EFB are utilized for composting
- Aerobic process avoids/ minimises methane generation
- Temperature needs to be controlled
- Mills to control water consumption & POME generation
- Pricing compost quality & applications

Composting Plant

POME – EFB mixing process (POME spraying and EFB turning using a backhoe) Application of POME & Agitation of Compost

*source: Evers. Rahman et al. (2013). MPOB Information Series no 635

Composting Plant

Compost Windrow

PRETREATMENT OF POME

Solid Removal Oil Recovery Sytem (SRORS)*

- · Consists of membrane and 3 phase decanter unit
- **SRORS** is a combination filtration and separation process of raw POME into 3 components; 1) oil (recover from decanter), 2) suspended solid (as decanter cake) and 3) filtrate water (water with dissolved solid)
- COD reduction rate ~ 60 70% oils recovery and solid removal from raw POME
- Reduces GHG emissions during the anaerobic treatment and POME load to the existing POME treatment
- Economic return increase of OER

MALAYSIAN PALM OIL BOARD

*source:https://welcome.yklgroup.com.my/srors.php; Liew *et al.* (2017). PIPOC 2017.

EVAPORATION OF POME

POMEvap by Alfa Laval (Towards zero liquid discharge in palm oil mills)*

- TOTAL POME ELIMINATION PROCESS
- POME is evaporated to produce colourless distille water and concentrated POME
- The water (BOD 300 ppm & COD 500 ppm) can be treated in aerobic ponds
- POME concentrate is further treated using decanter to recover the oil and heavy phase (recycle to the evaporator or used as potential solid fuel)

*source: Evers. R (2017) PIPOC 2017; https://www.alfalaval.com/industries/food-dairybeverage/food-processing/fat-and-oil-processing/palm-oil-processing/pome-treatment/

CONCLUSION

- Make biomass (EFB) / POME-biogas energy plant (or avoidance) an integral part of the milling process.
- Benefit from additional revenue from power generated/ resource recovery, saving on the operational cost and potential income from displaced biomass etc
- Technologies for sustainable EFB disposal and POME treatment are available

Challenges are in the consistent operation & technology adoption

THANK YOU

| ACKNOWLEDGEMENT |

Palm oil millers, RE developers, technology providers and individuals who were involved in this study

malaysianpalmoilboard

mpob_tweets

Malaysian Palm Oil Board

www.mpob.gov.my

palmoilpedia