
$\frac{\text{EVOLUTION}}{\text{Incinerator}} \rightarrow \text{TDP}$

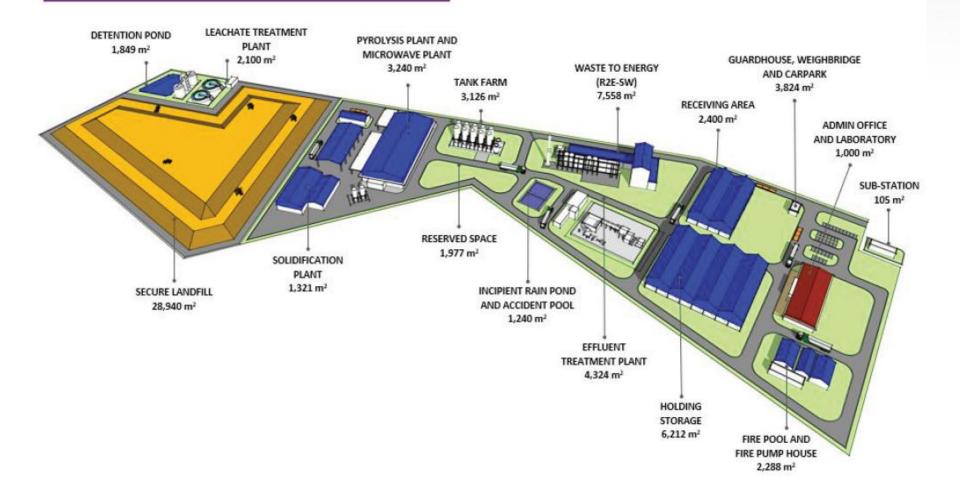
Prepared by: Ir. Tian Fung Wang Email: <u>fwtian@econasenergy.com</u> Date: 09th Aug 2023

WASTE MANAGEMENT

Phuket 700TPD MSW Incineration Power Plant

China 300TPD MSW to Fertilizer Plant

Malaysia 100TPD SW Incineration Power Plant



Surabaya 750TPD MSW Incineration Power Plant

Malaysia 3rd SW Treatment Centre

CONCEPTUAL DESIGN

CHALLENGES

FACED BY POM

Empty Fruit Bunches

Wet Decanter Cake

EQ CAR 2014

Obligation to comply

4. (2) An owner of every existing premises, including that which is not subject to any condition on limit values for air pollutants whether on the licence issued or approval granted for the operation of the existing facility, shall, on or before the expiry of five years from the date on which these <u>Regulations come into operation</u>, take such measures as may be necessary to comply with the opacity and limit values as specified in regulations 12 and 13.

P.U. (A) 151

 WARTA KERAJAAN PERSEKUTUAN

 4 Jun 2014

 4 Jun 2014

 PU. (A) 151

PERATURAN-PERATURAN KUALITI ALAM SEKELILING (UDARA BERSIH) 2014

ENVIRONMENTAL QUALITY (CLEAN AIR) REGULATIONS 2014

Made 23 April 2014 [AS(U)91/110/611/077 Jld. 10; PN(PU2)280/XV]

> DATUK SERI PALANIVEL A/L GOVINDASAMY Minister of Natural Resources and Environment

EQ CAR 2014

SECOND SCHEDULE [Regulation 13]

LIMIT VALUES AND TECHNICAL STANDARDS (GENERAL)

- (I) Control of fuel burning equipment, incinerators and crematoria
- Control of fuel quality for fuel burning equipment and incinerators not covered by the First Schedule:

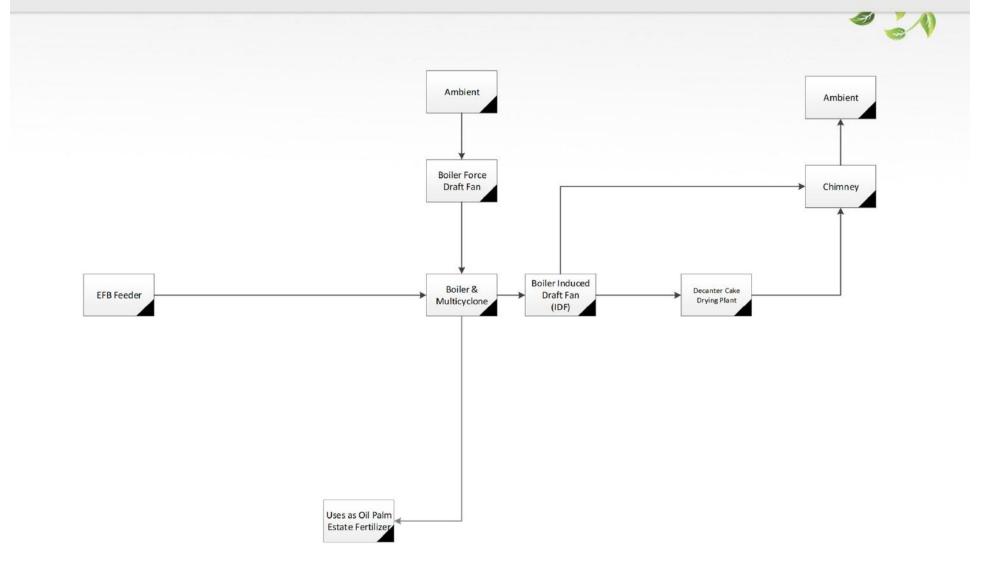
Fuel type	Fuel	Fuel quality parameter				
Liquid	All	Sulphur content < 500 ppm (per weight)				
	Sulphur content < 1% (per weight)					
<mark>Solid</mark>	Biomass	Wood, agricultural waste, etc.: air dry and in its natural composition (e.g. wood without coating, paint or other treatment) Residues from wood-based industries: without wood preservatives				

EQ CAR 2014

The CO₂ reference content is 12%.

Fuel type	Pollutant	Limit value	Monitoring
Solid	Total particulate matter (PM) Where dust load emitted: (a) > 0.44 < 1.0 kg/h (b) $\ge 1.0 < 1.5$ kg/h (c) $\ge 1.5 < 2.0$ kg/h (d) $\ge 2.0 < 2.5$ kg/h ⁰ (e) ≥ 2.5 kg/h	<mark>150 mg/m³</mark>	Once/year 2 times/year 3 times/year 4 times/year Continuous*
	Carbon monoxide (CO)	1000 mg/m^3	Periodic

*Averaging time for continuous monitoring is 30 minutes

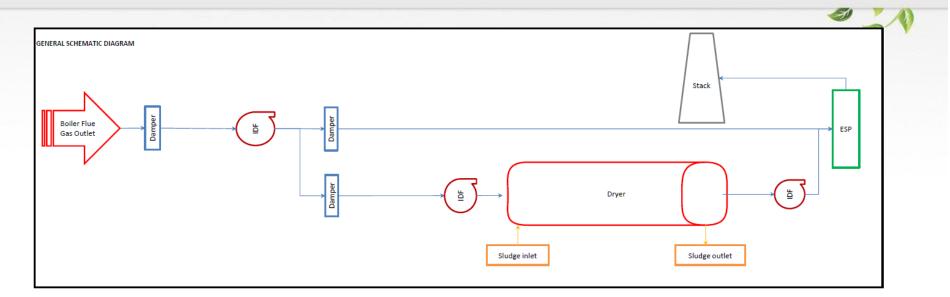

THERMAL DECOMPOSITION PLANT

TDP TRIAL @ MJM Ì Ambient Ambient Ambient Force Draft Fan **Boiler Force** (FDF) Draft Fan Chimney TDP TDP TDP Boiler Induced Boiler & Decanter Cake **EFB** Feeder Stage 1 Stage 2 Stage 3 Draft Fan Multicyclone Drying Plant Drying Burning Burnout (IDF) Electrostatic Precipitator Ash Collecting (ESP) Conveyor Ash Collecting Ash Storage Conveyor Uses as Oil Palm Estate Fertilizer

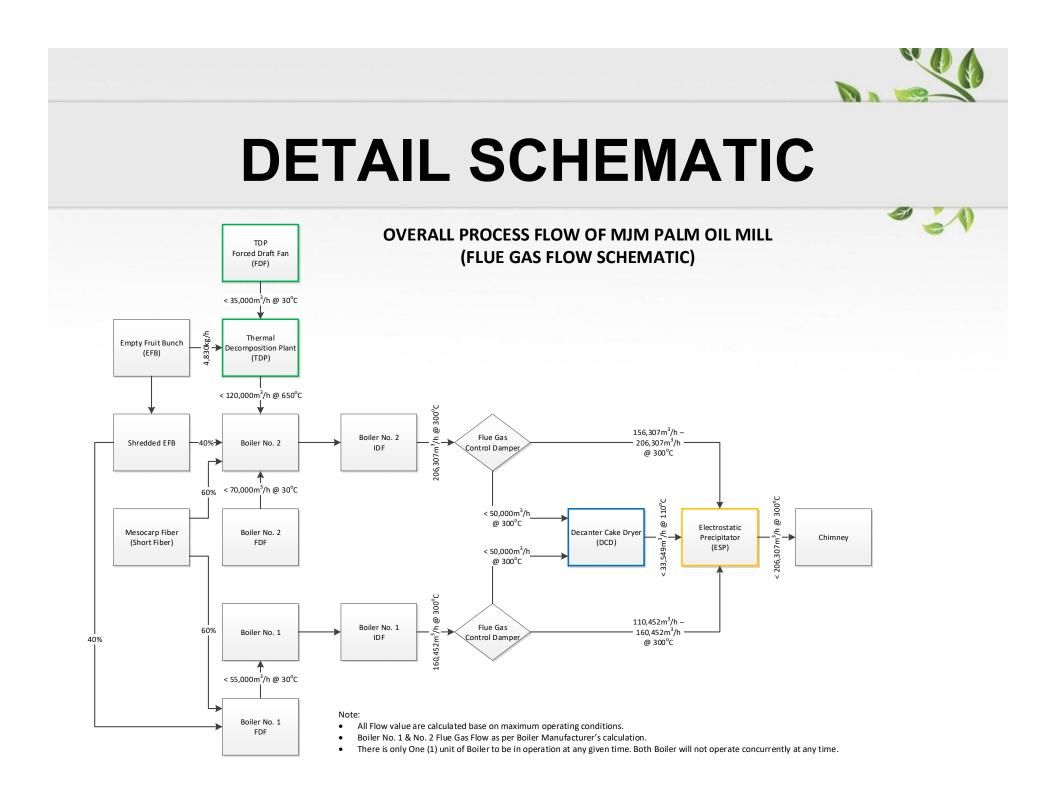
ORIGINAL SET UP @ MJM

SI X

TDP CALCULATION


1	INPUT						
1.1	Ultimate Analysis						
	Element	С	Н	0	Ν	S	Cl
	Percentage	36.97%	5.12%	33.52%	0.34%	0.35%	0.00%
1.2	Proximate Analysis						
	Element	Moisture	Ash	Combustible	Density	HHV, kJ/kg	
	Percentage	20.00%	3.70%	76.30%	0.50	14,794	
1.3	Throughput		70				
	FFB Throughput	=		t/h		1	
	EFB: FFB Ratio	=	23%			\checkmark	
	EFB Throughput	=		t/h (Before p			
	Moisture Content	@	75%	[Based on Te	st Report]		
	Throughput	=	4.83	t/h (After dry	ing)	1	
	Moisture Content	@	20%	[Design to co	ntrol]	\checkmark	
		=	4,830	kg/h			
2	CALCULATION						
2.1	CALORIFIC VALUE						
2.1.1	LHV	=	81C + 246H + 2	265 - 260 - 6W		\checkmark	
	2	=		kCal/kg			
		=	13,700				
	Total Heat Output	=		GJ/h			
						\downarrow	
						•	
2.1.2	HHV	=	LHV + 600 (W	+ 9H)			
		=	3,669	kCal/kg			_
		=	15,360	kJ/kg		< 5%	

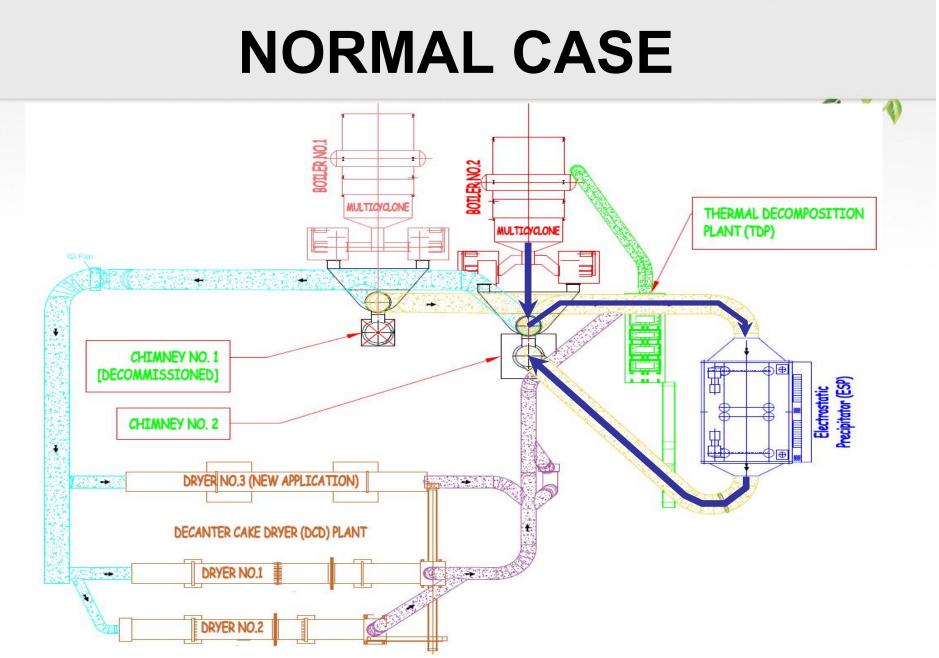
					0	V
2.2	AIR REQUIREMENT					
2.2.1	Excess air factor	=	1.8			
2.2.2	Air Required, L _o	=	[8.89C + 26.7H + 3.33S - 3.	330] x 10 ⁻²		
		=	3.55 Nm ³ /kg			
		=	30,867 Nm ³ /h			
2.2.3	Air Required, L₀	=	[11.6C + 34.78H + 4.35S - 4	4.350] x 10 ⁻²	2	
		=	4.63 kg/kg			
		=	40,236 kg/h			
2.3	FLUE GAS					
2.3.1	Wet Flue Gas, L _v	=	(m – 0.21)L _o + 1.867C + 0.7	'S + 0.8N + 1	1.2H + 1.24	W + 0.62
		=	7.16 Nm ³ /kg			
		=	34,594 Nm³/h			
				No	rmal Condit	tion
2.3.2				D.		_
2321	Air Moisture Content					Pa
	Content	=	1.5%	V ₁	> 34,594	Pa Nm³/h
2.3.2.2	Content	= =	1.5% 0.0959 Nm ³ /kg			
2.3.2.2	Content L _m		0.0959 Nm ³ /kg	V ₁ T ₁		Nm³/h °C
	Content		0.0959 Nm³/kg L _v - L _m - W - 9H	V ₁ T ₁	0 tual Condit	Nm³/h °C
2.3.2.2	Content L _m	=	0.0959 Nm ³ /kg	V ₁ T ₁ P ₂	0 tual Condit	Nm³/h °C ion Pa
2.3.2.2	Content L _m	=	0.0959 Nm³/kg L _v - L _m - W - 9H		0 tual Condit	Nm ³ /h °C ion Pa m ³ /h
2.3.2.2 2.3.3	Content L _m Dry Flue Gas (Flow)	= = =	0.0959 Nm ³ /kg L _v - L _m - W - 9H 6.41 Nm ³ /kg 30,938 Nm ³ /h	$ \frac{V_1}{V_2} \frac{P_2}{T_2} $	0 tual Condit - - 116,961 650	Nm ³ /h °C ion Pa m ³ /h
2.3.2.2	Content L _m	= = =	0.0959 Nm ³ /kg L _v - L _m - W - 9H 6.41 Nm ³ /kg	$ \frac{V_1}{V_2} \frac{P_2}{T_2} $	0 tual Condit - - 116,961 650	Nm ³ /h °C ion Pa m ³ /h

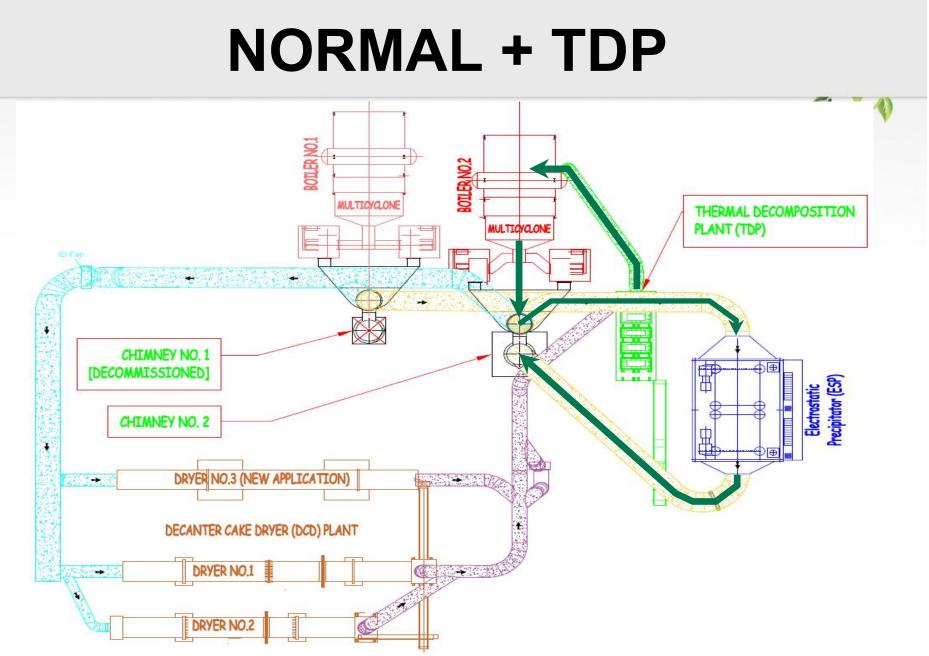

- = 37,229 kg/h

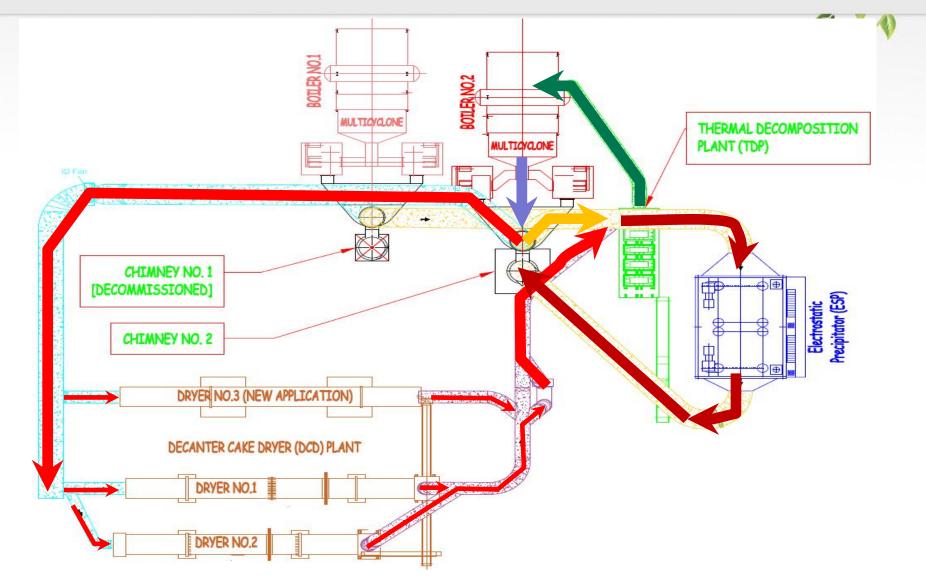
DRYER CALCULATION

SLUDGE DRYING PROCESS				FLUE GAS DRYING PROCE	SS				
	MASS	BALANCE			MASS BA	LANCE	2.0		
NLET		OUTLET		INLET		OUTLET	Estimated	For Refere	nce Only
Mass flowrate	4 t/h	Mass flowrate	1,111 kg/h	Temprature	300 °C	Temperature	110	110	130 °C
Moisture content	75%	Moisture content	10%	Relative Humudity	0.20%	Relative Humudity	17.92%	20.00%	9.08%
emprature	40 °C	Temperature	60 °C	Enthalpy	689.778 kJ/kg	Enthalpy	689.78	782.55	689.78 kJ/kg
y matter flowrate	1000 kg/h	Water content	111 kg/h	Humidity Ratio	125.6609 g/kg	Humidity Ratio	214.28	248.82	204.06 g/kg
Vater content	3,000 kg/h			Specific Volume	1.953 m ³ /kg	Specific Volume	1.46	1.52	1.519 m ³ /k
				Moisture per m ³ flow	0.0643 kg/m ³	Moisture per m ³ flow	0.1468	0.1637	0.1343 kg/m
						Flow rate required	35,050	29,077	41,273 m³/h
	ENERG	BALANCE			ENERGY B	ALANCE			
ASSUMPTION		CALCULATION		INLET CONDITION		OUTLET CONDITION	Estimated	For Refere	nce Only
Specific heat of water	4.182 kJ/kg.K	Water evoporated	2,889 kg/h	Temprature	300 °C	Temperature	110	110	130 °C
latent heat of water	2,230 kJ/kg	Energy to heat up water	9,293 kJ/h	Specific Energy	689.778 kJ/kg	Specific Energy	689.78	782.55	689.78 kJ/kg
Specific heat of sludge	0.8 kJ/kg.K	Energy to heat up sludge	16,000 kJ/h	Relative Humudity	0.20%	Specific Volume	1.46	1.52	1.519 m3/k
		Energy to evaporate water	7,167,102 kJ/h	Humidity Ratio	125.6609 g/kg				
						Without evaporation			
		Total energy	7,192,396 kJ/h			Humidity Ratio	125.6609	125.6609	125.6609 g/kg
		1				Enthalpy	448.85	448.85	475.11 kJ/kg
COLOUR NOTES						Net Energy differences	240.93	333.70	214.67 kJ/kg
nput Assumption						Energy per m3 flow	165.02	219.54	141.32 kJ/m
Value from Psychrometric	Chart					Flow rate required	43,584	32,761	50,893 m3/h

TDP CONSTRUCTION




PILOT PLANT TEST RESULT



NORMAL + TDP + DCD

STACK SAMPLING TEST

Client	MJM (PALM OIL MILL) SDN BHD (MJM PALM OIL MILL)							
Report Reference	SBTC/MJMPOM/22(01)							
Date	22 nd April 2022							
Description	Units	B2-A Value (as given / measured)	B2-B Value (as given / measured)					
Starting Time	~	09:30 hrs	11:00 hrs					
Ending Time	-	10:30 hrs	11:36 hrs					
Dust Particulate Emission	mg/Nm ³ , dry, @ 12% CO ₂	28.938	226.753					
Standard Limit (Imposed by Department of Environment)	mg/Nm ³	400.0	400.0					
Description	Units	B2-C Value (as given / measured)	B2-D Value (as given / measured)					
Starting Time	-	12:00 hrs	13:00 hrs					
Ending Time	-	12:36 hrs	13:36 hrs					
Dust Particulate Emission	mg/Nm ³ , dry, @ 12% CO ₂	65.333	73.571					
Standard Limit (Imposed by Department of Environment)	mg/Nm ³	400.0	400.0					

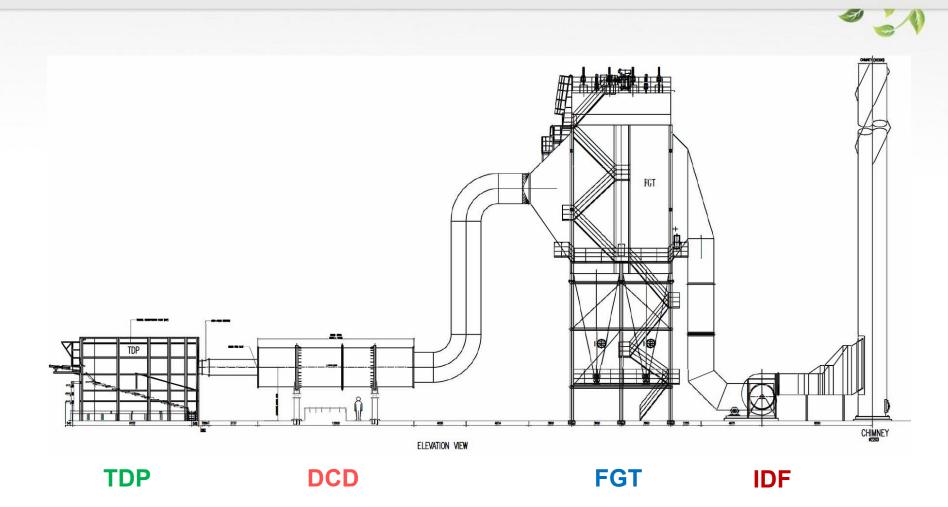
EMISSION TEST RESULT

No.	Scenarios Description	Stack Sampling Result Dust Concentration (mg/m ³ @12%CO ₂)	Remarks
1	In Operation: Boiler 2 + ESP Not In Operation: TDP, DCD	73.571	NORMAL CASE (with ESP)
2	In Operation: TDP + Boiler 2 + ESP Not In Operation: DCD	65.333	NORMAL CASE + TDP
3	In Operation: TDP + Boiler 2 + DCD + ESP	29.938	NORMAL CASE + TDP + DCD
4	In Operation: TDP + Boiler 2 + DCD Not In Operation: ESP	226.753	NORMAL CASE (without ESP)

* Sampling & Tested by Accredited 3rd Party

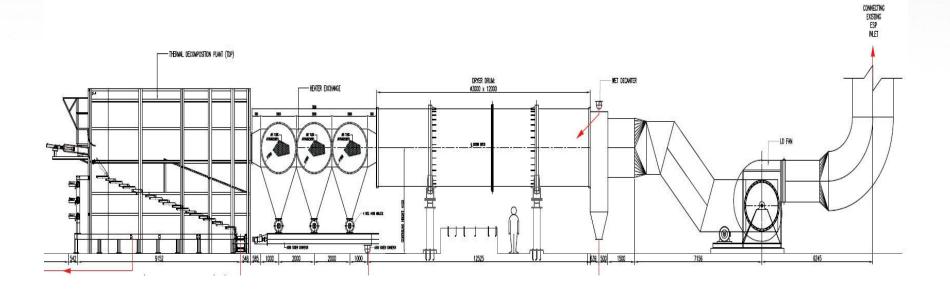
FUTURE

PLAN FORWARD



CONDITION of CONCEPT

- TDP NEAR to existing boiler
- IDF of existing boiler was **OVERSIZED**
- **SPACE** availability is sufficient
- Throughput LIMITED by existing IDF

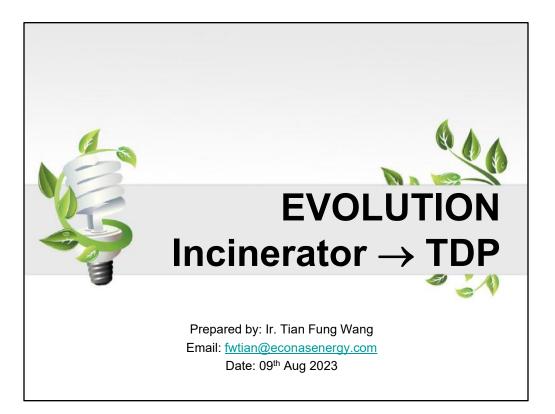


FULLY STANDALONE TDP

PARTIAL STANDALONE

TDP

HEX


DCD

IDF

SARAWAK'S EFB TREATED via SARAWAK INNOVATION

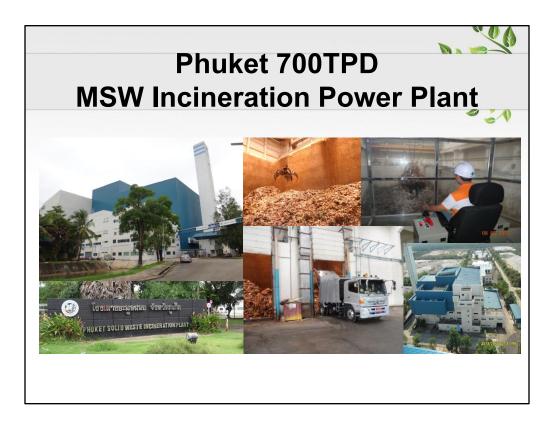
Thank You

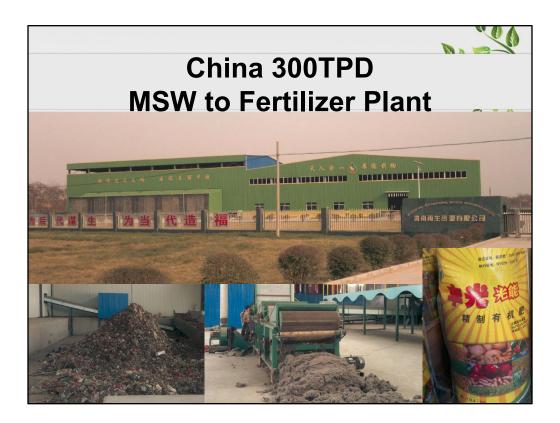
Good afternoon, ladies & gentlemen.

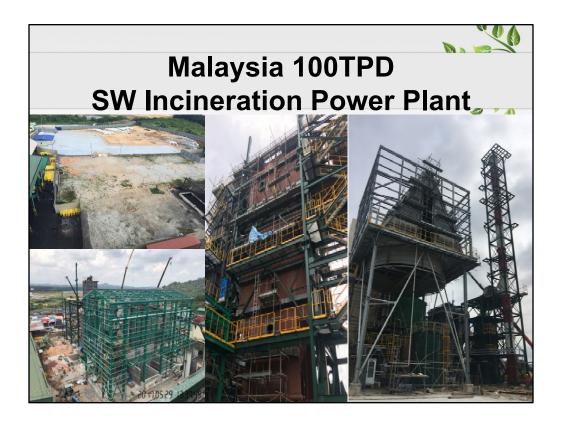
My topic of discussion today is Evolution from Incinerator to TDP.

Honestly, I am not an expert in Palm Oil industry. My specialty is thermal treatment of municipal waste & hazardous waste.

My apology, if there is any error of facts in relation to Palm Oil industry, and please feel free to correct me.


Before I present in detail of TDP, I wish to explain a bit of my background which lead to the idea of evolving existing Natural Draft incinerator to TDP.

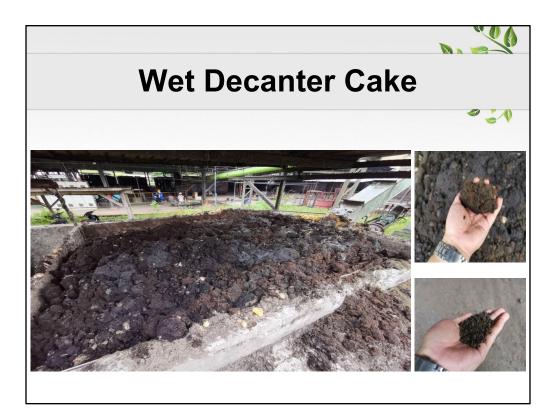



I had completed:

- 1. Thailand 1st Large Scale Municipal Waste Incineration Power Plant,
- 2. China, Xi An Municipal Waste to Fertilizer Plant,
- 3. Malaysia 1st Hazardous Waste Incineration Power Plant and
- 4. Indonesia 1st Large Scale Municipal Waste Gasification Power Plant.

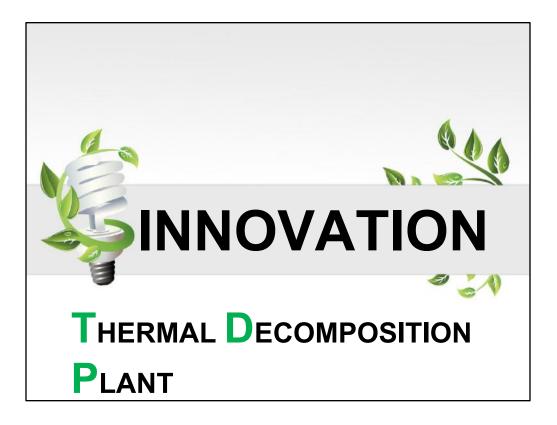
All of these projects utilizing thermal treatment for waste disposal purpose.

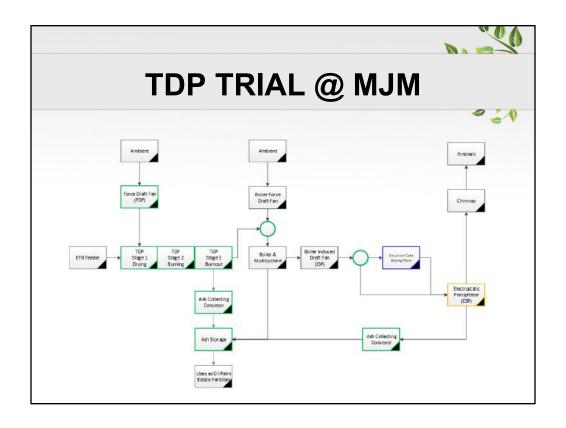

Nowadays, myself and partners are in the mid of developing Malaysia 3rd Scheduled Waste treatment center in Johor mainly to serve industry at southern part of Malaysia, generally serving whole Malaysia.


From the experience of municipal waste & hazardous waste incineration, it led to the idea of implementing the high efficiency combustion concept in Empty Fruit Bunch treatment for Palm Oil industry.

From my understanding, most of Sarawak Palm Oil Mill facing several challenges such as:

- 1. Empty Fruit Bunch disposal using low combustion efficiency natural draft incinerator
- 2. Difficulty in disposal of wet decanter cake
- 3. Enforcement of Environmental Quality Clean Air Regulations 2014

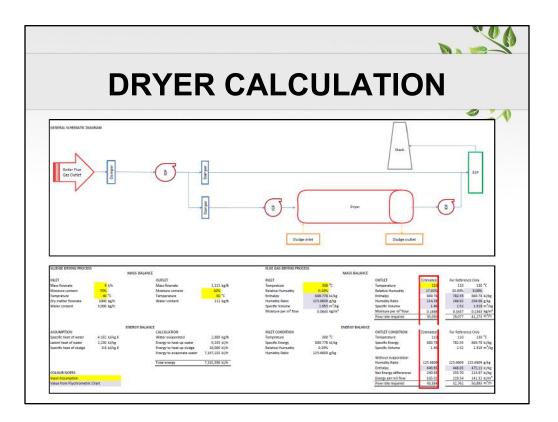


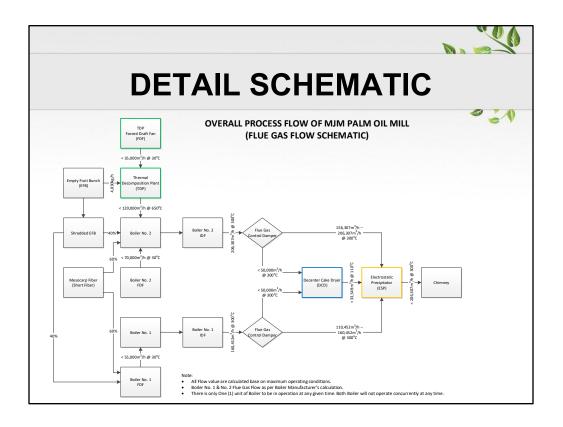


	EQ CAR 2014						
			SECOND SCHEDULE [Regulation 13]	5 <u>-</u> 1			
	LIMIT	VALUES ANI	D TECHNICAL STANDARDS (GENERAL)				
(I) Control of <mark>fuel burning equipment, incinerators</mark> and crematoria							
(I)	Control of <mark>fu</mark>	el burning eo	<mark>quipment, incinerators</mark> and crematoria				
(I) 1.		el quality for	quipment , incinerators and crematoria fuel burning equipment and incinerators not covered				
	Control of fue	el quality for					
	Control of fue by the First So	el quality for s	fuel burning equipment and incinerators not covered				
	Control of fue by the First So Fuel type	el quality for r chedule: Fuel	fuel burning equipment and incinerators not covered Fuel quality parameter Sulphur content < 500 ppm (per weight)				
	Control of fue by the First So Fuel type	el quality for r chedule: Fuel All	fuel burning equipment and incinerators not covered Fuel quality parameter Sulphur content < 500 ppm (per weight)				
	Control of fue by the First So Fuel type	el quality for : chedule: Fuel All Coal	fuel burning equipment and incinerators not covered Fuel quality parameter Sulphur content < 500 ppm (per weight)				
	Control of fue by the First So Fuel type Liquid	el quality for r chedule: Fuel All	fuel burning equipment and incinerators not covered Fuel quality parameter Sulphur content < 500 ppm (per weight)				

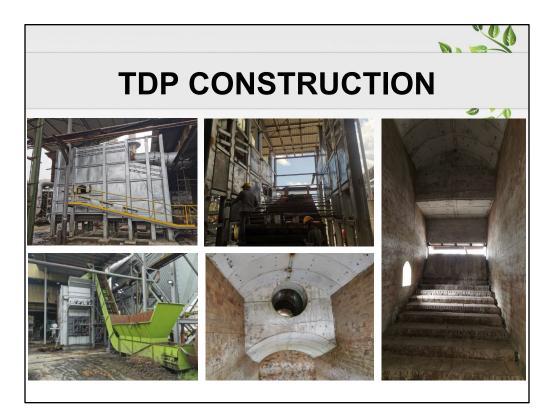
EQ CAR 2014						
			Ø 🏅			
he CO2 referen	nce content is 12%.					
Fuel type	Pollutant	Limit value	Monitoring			
	(Total) (particulate) (matter) ((PM)) Where dust load emitted:					
Solid	(a) > 0.44 < 1.0 kg/h (b) \geq 1.0 < 1.5 kg/h (c) \geq 1.5 < 2.0 kg/h (d) \geq 2.0 < 2.5 kg/h ⁰ (e) \geq 2.5 kg/h	<mark>(150 mg/m³)</mark>	Once/year 2 times/year 3 times/year 4 times/year Continuous*			
	Carbon monoxide (CO) e for continuous monitoring is 30 min	(1000 mg/m^3)	Periodic			

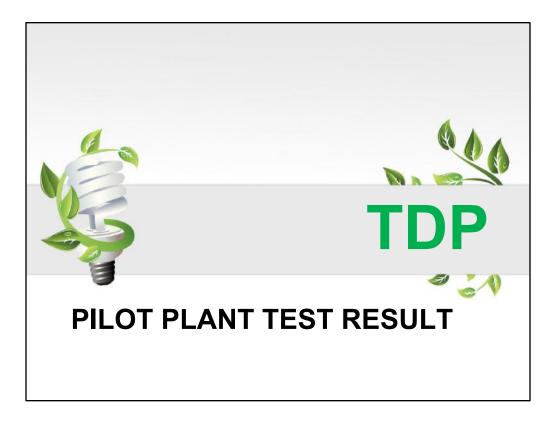
Due to the above, I was given a task by my brother to propose a high combustion efficiency concept in disposing EFB. Thus, it come to the innovation of TDP known as Thermal Decomposition Plant.




We had completed a Pilot Plant in MJM Palm Oil Mill by retrofitting the current Boiler set up to incorporate TDP into the overall process flow. Basically, we added a high efficiency combustion chamber that is able to burn 100% EFB couple with the current boiler operation mainly for EFB disposal. From the Pilot Plant, we found that the Ash generated consist of 25-30% potassium content which can be used as fertilizer.

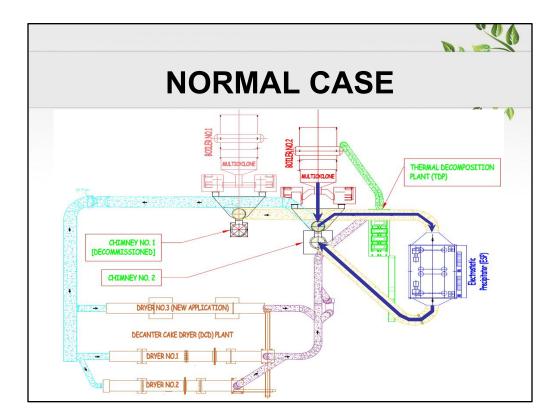
	TDP CALCULATION					
					5 10	
	INPUT		2.2	AIR REQUIREMENT	4.0	
1	Ultimate Analysis		2.2.1	Excess air factor	= 1.8	
	Element Percentage	C H O N S Cl 36.97% 5.12% 33.52% 0.34% 0.35% 0.00%	2.2.2	Air Required, L	= [8.89C + 26.7H + 3.33S - 3.33O] x 10 ⁻²	
	i ereentage	505770 01210 5015270 013470 013370 01000	2.2.2	, in negation, to	= [8.89C + 20.7H + 3.335 - 3.330] X 10 = 3.55 Nm ³ /kg	
2	Proximate Analysis				= 30,867 Nm ³ /h	
	Element	Moisture Ash Combustible Density HHV, kJ/kg			- 50,807 Nm /h	
	Percentage	20.00% 3.70% 76.30% 0.50 14,794				
			223	Air Required, L	= [11.6C + 34.78H + 4.35S - 4.35O] x 10 ⁻²	
	Throughput FFB Throughput	= 70 t/h	2.2.5	An negatica, o	= 4.63 kg/kg	
	EFB: FFB Ratio	= 70 t/n = 23%			= 40,236 kg/h	
	EFB Throughput	= 16.1 t/h (Before press)			10,250 (8)11	
	Moisture Content	@ 75% [Based on Test Report]	2.3	FLUE GAS		
			2.3.1	Wet Flue Gas, L	= (m - 0.21)L _n + 1.867C + 0.7S + 0.8N + 11.2H + 1.24W + 0	
	Throughput	= 4.83 t/h (After drying)			 7.16 Nm³/kg 	
	Moisture Content	@ 20% [Design to control] 🗸 🤟			= 34,594 Nm ³ /h	
		= 4,830 kg/h			Normal Condition	
	CALCULATION		2.3.2	Air Moisture Content	P Pa	
	CALORIFIC VALUE		2.3.2.	1 Content	= 1.5% V ₁ 34,594 Nm ³	
1	LHV	= 81C + 246H + 26S - 26O - 6W	2.3.2.	2 L_m	= 0.0959 Nm ³ /kg T ₁ 0 °C	
^		= 3,273 kCal/kg			Actual Condition	
		= 13,700 kJ/kg	2.3.3	Dry Flue Gas (Flow)	= L _v - L _m - W - 9H P ₂ - Pa	
	Total Heat Output	= 66 GJ/h			= 6.41 Nm ³ /kg V ₂ 116,961 m ³ /h	
		\checkmark			= 30,938 Nm ³ /h T ₂ 650 °C	
					1 ₂ 030 C	
2	HHV	= LHV + 600 (W + 9H) = 3.669 kCal/kg				
		 3'00A Krsi/k8 	2.3.4	Dry Flue Gas (Mass)	= (m-0.2)L ₀ + 3.667C + 2S + N + 9H + W + 1.03Cl	
		= 15,360 kJ/kg < 5%			= 7.71 kg/kg	
					= 37,229 kg/h	

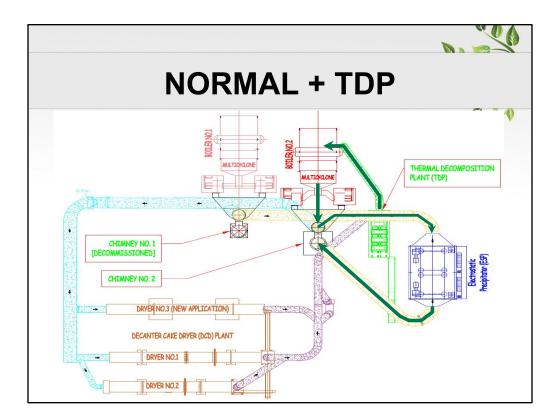

Here is calculation for TDP & Dryer during the design stage as it is important because the whole process was interlinked.

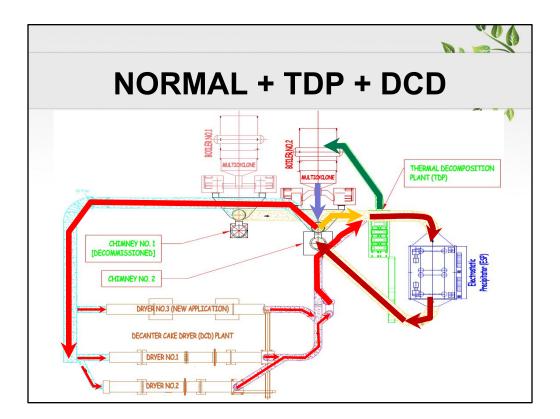


Hot flue gas from TDP channeled into Boiler may help to reduce the need of burning PKS in the boiler.

Since MJM Plant also facing Wet Decanter cake issue, the hot flue gas from boiler was used to dry up the wet decanter cake for other purpose which give additional income stream to the Palm Oil Mill.


Here are some photos of TDP during construction.



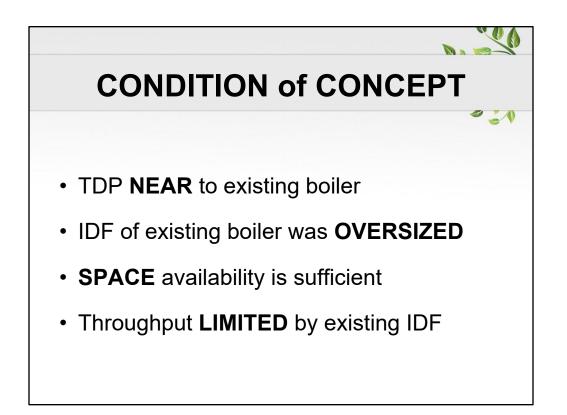

Please allow me to present you the Pilot Plant third party sampling result on TPM for your reference.

Since the plant consist of existing Boiler, TDP and DCD, we categorize the operating condition as

- 1. Normal Case Only Boiler is in Operation
- 2. Normal Case + TDP Boiler & TDP is in Operation
- 3. Normal Case + TDP + DCD Boiler, TDP & DCD are all in operation

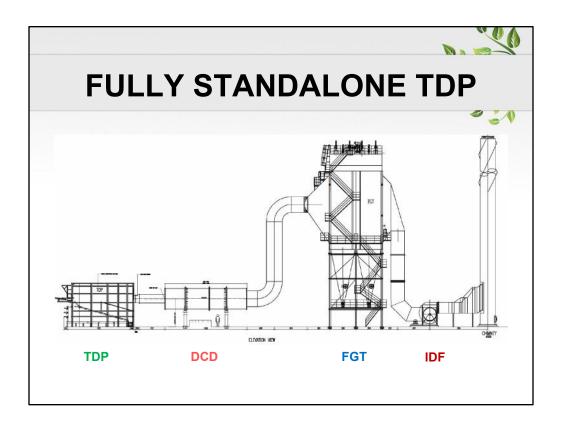
			N a
	CKS	SAMPLIN	G TEST
Client	м	JM (PALM OIL MILL) SDN BHD (N	AJM PALM OIL MILL)
Report Reference		SBTC/MJMPOM/22	
Date		22 nd April 2022	2
Description	Units	B2-A Value (as given / measured)	B2-B Value (as given / measured
Starting Time		09:30 hrs	11:00 hrs
Ending Time	-	10:30 hrs	11:36 hrs
Dust Particulate Emission	mg/Nm ³ , dry, @ 12% CO ₂	28.938	226.753
Standard Limit (Imposed by Department of Environment)	mg/Nm ³	400.0	400.0
Description	Units	B2-C Value (as given / measured)	B2-D Value (as given / measured
Starting Time	-	12:00 hrs	13:00 hrs
Ending Time	-	12:36 hrs	13:36 hrs
Dust Particulate Emission	mg/Nm ³ , dry, @ 12% CO ₂	65.333	73.571
Standard Limit (Imposed by Department of Environment)	mg/Nm ³	400.0	400.0

Third party sampling was done for these operating conditions.


	EMISSION TEST RESULT						
No.	Scenarios Description	Stack Sampling Result Dust Concentration (mg/m ³ @12%CO ₂)	Remarks				
1	In Operation: Boiler 2 + ESP Not In Operation: TDP, DCD	73.571	NORMAL CASE (with ESP)				
2	In Operation: TDP + Boiler 2 + ESP Not In Operation: DCD	65.333	NORMAL CASE + TDP				
3	In Operation: TDP + Boiler 2 + DCD + ESP	29.938	NORMAL CASE + TDP + DCD				
4	In Operation: TDP + Boiler 2 + DCD Not In Operation: ESP	226.753	NORMAL CASE (without ESP)				
* Sampling & Tested by Accredited 3 rd Party							

We found that,

- 1. ESP is able to achieve 73ppm at Normal case as compare to 226ppm without ESP.
- 2. During TDP in operation, the dust particulate emission reduces a little bit as the combustion had been shifted in front gives more room for dust settling.
- 3. During DCD in operation, the dust particulate emission reduces significantly because temperature of the flue gas was dropping and the ESP now become oversized in terms of flow rate and yield better efficiency.



Next, I wish to share some of the plan forward in treating EFB via TDP.

Since the TDP in Pilot Plant was couple with existing boiler, there are some limitations in scaling up of this concept:

- 1. In terms of layout, TDP need to be near to existing Boiler
- 2. In terms of capacity, IDF of existing boiler need to be oversized or still have room for speeding up.
- 3. Normally, there is no space beside existing boiler for most of the Palm Oil Mill.
- 4. Throughput of TDP will be limited by the Boiler IDF as it relying on IDF in controlling the negative pressure in combustion chamber.

Due to the above limitation, the solution is to have a fully standalone unit like this OR

partially standalone unit like this where the throughput of EFB disposed was not limited.

Last but not least, I think we need to put effort to resolve our own challenges within Sarawak because the nature of the commercial environment in Sarawak might be different from the other states.

For example, other states in Malaysia may apply Feed In Tariff for EFB Power Plant and get good revenue while generating electricity from EFB and export to the national grid. Unfortunately, Feed In Tariff in Sarawak might not be that attractive as compare to other states for the moment. Thus, converting EFB to fertilizer probably give better ROI in Sarawak.

This ends my today's presentation. Thank you for your passion and I wish you all the best.