

UNIVERSITI PUTRA MALAYSIA

The Palm Oil Milling Technology Exhibition & Conference (POMtec) 2023

BIOLUBRICANT AND GREEN DIESEL PRODUCTION FROM BIOWASTE DERIVED FROM PALM OIL INDUSTRY

S. Sivasangar¹, Y.H. Taufiq Yap², Chang He², S.A. Aleem³

¹Department of Science and Technology, Faculty of Humanities, Management and Science, UPMKB ²Department of Chemistry, Faculty of Science, Universiti Putra Malaysia ³Petronas Research Sdn Bhd.

www.upm.edu.my

Palm Free Acid Distillate (PFAD)

Malaysia's total oil palm planted area has reached 5.67 million hectares, with total CPO production of 18.45 million tonnes in year 2022, [MPOB].

□ PFAD is generated in about 5% of the amount of CPO used. [Jumaah et al., 2019].

Composition: 81.7 % FFA, 14.4% glycerides etc.
[J.E. Lam et al., 2022].

 Selling price : RM 4,313.50/tonne (Year : 2022.) (MPOB) (FOB)

~ 922,500 tonnes / year 2022

PFAD to Bio-Lubricant

Problems/Issues

PFAD to Green Diesel

Advantages:

- ✓ Energy saving;
- ✓ Consumption reduction;
- ✓ More adequate combustion;
- ✓ Wide applicability;
- ✓ Strong climate adaptability.

It is a hydrocarbon produced by the removal of oxygen and part of carbon, and its structure and composition are similar to that of petrochemical diesel oil.

Hydrodeoxygenation Reaction

BACKGROUND- Application of Heterogenous

Catalysts

Disadvantages

[5] A. Dhakshinamoorthy, M. Alvaro, A. Corma and H. Garcia, Dalton Trans., 2011, 40, 6344–6360.

Hydrodeoxygenation(HDO) Reaction

Hydrodeoxygenation (HDO) is a hydrogenolysis process for removing oxygen from oxygen-containing compounds.

Reaction	Hydrodeoxygenation (HDO)
Product	n-paraffins , CO, CO ₂ , water
Molecular species	No existence O ₂ species
Cetane number	High cetane number (80-90)
Performance	High fuel performance
Flash point level	Low flash point
NOx emission	Lower NOx emission than Biodiesel
Feed sensitivity	Not sensitive with FFA content
Economic level	Economically effective
	Conventional micropore

Hierarchical mesopore (Pyrolized MIL-101)

Methodology- catalyst preparation

1.1. The preparation of MIL-101-Cr

Figure. The preparation process of MIL-101-Cr and P-MIL-101-Cr

Fig. The structure of MIL-101-Cr

Methodology- catalyst preparation

1.2. The preparation of P-Ni/MIL-101-Cr

Fig. Schematic diagram of MIL-101 supported Ni to prepare P-Ni/MIL-101-Cr catalyst

Methodology- Hydrodeoxygenation reaction

The HDO reaction was carried out in a 100 mL reactor. 10 g Feedstock + 0.5g catalyst at a mass ratio of 20:1 added into the reactor and sealed. The reaction temperature is 400 °C, purified H₂ pressure and the mixture stirred at 200 r/min for 3 h. The obtained liquid and gas product are collected and analyzed using GC and GCMS. The used catalyst is washed and kept for reusability

studies with the same method and same parameters.

Product: Green Diesel (C15-C18)

Catalyst surface and pore (BET)

Samples	S _{BET} (m ² /g)	Pore Volume(cm ³ / g)	Average po size (nm)	re
MIL-101-Cr	2923.73	1.52	2.09	<2.35nm
P-MIL-101-Cr	277.13	0.21	5.37	
P-4%Ni/MIL-101-Cr	230.21	0.19	4.96	
P-8%Ni/MIL-101-Cr	211.37	0.17	4.79	->2.35nm
P-14%Ni/MIL-101- Cr	80.50	0.13	4.20	
P-25%Ni/MIL-101- Cr	52.87	0.07	4.09	

Table 3 SBET, pore volumes, average pore sizes of the samples.Palmitic Acid's average molecular size is 2.35nm

Catalyst morphology images (HRTEM)

Fig. HR-TEM images of catalyst

- ✓ The elements distributed uniformly in the catalyst indicated that the crystal's internal structure did not collapse or aggregate.
- ✓ The octahedral structure of MIL-101-Cr is maintained after pyrolysis.

Catalytic hydrodeoxygenation reaction of Palmitic acids

Fig. Conversion and product selectivity of palmitic acid hydrodeoxygenation reaction using Ni/P-MIL-101 catalysts

✓ Ni loading above 8% P-MIL-101 can show the best activity with <u>100% of</u> <u>conversion and 100% of hydrocarbon selectivity</u>.

 ✓ Optimization reaction temperature is 400°C, which has <u>100% of conversion and</u> <u>selectivity</u> and <u>91.1% of green diesel selectivity</u>.

Reusability studies of 8-25wt%Ni/P-MIL-101 catalysts

Fig. Catalytic HDO of Palmitic acid using 8%Ni/P-MIL-101-Cr catalyst

Fig. Catalytic HDO of Palmitic acid using 25%Ni/P-MIL-101-Cr catalyst

Fig. Catalytic HDO of Palmitic acid using 14%Ni/P-MIL-101-Cr catalyst

Analysis of used catalysts - P-14%Ni/MIL-101

HDO with different feedstocks

	Catalyst	Feedstock	Conditions	Catalyst loading (wt%)	Conversion (%)	Selectivity of paraffins (%)
1	14 wt% Ni/P-MIL-101	Palmitic acid	3 h, 400 °C, 3MPa	5	100	100
2	14 wt% Ni/P-MIL-101	PFAD	3 h, 400 °C, 3MPa	5	99.7	100
3	14 wt% Ni/P-MIL-101	Palm kernel oil	3 h, 400 °C, 3MPa	5	99.0	100
4	14 wt% Ni/P-MIL-101	Waste cooking oil	3 h, 400 °C, 3MPa	5	97.1	100
5	14 wt% Ni/P-MIL-101	Lauric acid	3 h, 400 °C, 3MPa	5	97	95.2
6	14 wt% Ni/P-MIL-101	Fatty acid methyl easter (FAME)	3 h, 400 °C, 3MPa	5	100	100

Table 4. The catalytic effect of different feedstock in HDO

Liquid product characterization

No.	Fuel properties	Green fuel
1	Cloud Point (°C)	-21
2	Flash Point (Pensky-Martens Closed Cup)	132.7
3	Kinematic Viscosity (100°C) (cSt)	0.40
4	Kinematic Viscosity (40°C) (cSt)	1.7
5	Pour Point (°C)	-17
6	Ash Content (wt%)	<0.01
7	Carbon Residue (MCRT Method) (wt%)	0.05
8	Cetane Index (by Calculation)	88.5
9	Volatility Characteristic (Distillation)(°C)	248
10	Heating value, MJ/kg	42

Average mass balance of Hydrodeoxygenation reaction

Reaction	Feedstock	Liquid product	water	Char + residue
	(g)	(g)	(g)	(g)
1	10.03	7.63	1.12	0
2	10.01	7.81	1.24	0
3	10.01	7.54	1.16	0
Average	10.02	7.66	1.17	0

Feedstocks and Products after HDO

Lauric acid

PFAD (SOPB Sample)

Palm kernel oil

Waste cooking oil

FAME

Literatures comparison of our innovation

	Catalyst	Feedstock	Conditions	Solvent	Catalyst loading (wt%)	Conversion (%)	Selectivity (%)	Reusability	Ref
1	10 wt% La/HZSM5	Oleic acid	2 h, 400 °C, 5MPa	Free	5	100	97	4	Azreena, et, al, 2022
2	MoO ₂ /CNTs	Palmitic acid	4 h, 220 °C, 4MPa	Decane	50	100	92.2	5	<u>Ranran</u> et, al, 2015
3	7 wt% Ni/RM	Palmitic acid	4 h, 300 °C, 4MPa	Decane	20	100	100	3	<u>Jin</u> et, al, 2022
4	20%Ni/MoO ₂ @Mo ₂ CT _x	Palmitic acid	4 h, 280 °C, 4MPa	Decane	20	100	97	5	<u>Liang</u> et, al, 2020
5	Pt/H ₃ PO ₄ @MI L-101(Cr)	Oleic acid	2 h, 300 °C, 2MPa	Decane	20	95	75.5		Dieu- Phuong et, al, 2020
6	8%NiO/NbOP O ₄	Palm oil	5 h, 250 °C, 3.5MPa	Free		85.7	97.1		<u>Mustika</u> et, al, 2020
7	<mark>25 wt% Ni/P-</mark> MIL-101	Palmitic acid	3 h, 400 °C, <mark>3MPa</mark>	<mark>Free</mark>	- 5	<mark>100</mark>	<mark>100</mark>	8	<mark>This work</mark>
8	<mark>14 wt% Ni/P-</mark> MIL-101	Palmitic acid	<mark>3 h, 400 °C,</mark> <mark>3MPa</mark>	Free	5	<mark>100</mark>	<mark>100</mark>	<mark>15</mark>	<mark>This work</mark>

Deoxygenation of PFAD

Publications

NO	TITLE	JOURNAL	STATUS
1	Catalytic ketonization of palmitic acid over a	RSC Advances	Published
	series of transition metal oxides supported		(2021)
	on zirconia oxide-based catalysts.		
2	Development of Porous MIL-101 Derived	Fuel	Accepted
	Catalyst Application for Green Diesel		(2023)
	Production.		
3	A method of Using A Heterogenous Catalyst	Patent Pending	PI2022007531
	for Preparing Green Diesel Via	(Malaysia)	(2022)
	Hydrodeoxygenation (HDO) reaction of Fatty		
	acids feedstock.		

Conclusions

- PFAD as feedstock has great potential to be to used produce value added chemicals such as bio-lubricants and biofuels.
 (Green diesel and Sustainable Aviation Fuel (SAF))
- Advancement in catalyst technology makes this conversion process more feasible and economical.

BIO

"A man must never forget that fossil fuels are very precious and biofuels are the wisest choice"

SOP EDIBLE OILS SDN. BHD. (538248-X) (A SUBSIDIARY OF SARAWAK OIL PALMS BERHAD)

12 March 2021

The Senior Lecturer Department of Science and Technology Faculty of Humanities, Management and Science, Universiti Putra Malaysia Kampus Bintulu, 97008 Bintulu, Sarawak, Malaysia

Attn: Dr Sivasangar Seenivasagam

Dear Dr,

RE: Palm Free Acid Distillate Samples

Your email requisition on Palm Fatty Acid Distillate ("PFAD") to our Mill Controller Mr Thong Kuok Ling dated 25 February 2021 is refers.

We hereby provide our PFAD samples as per requested as part of our support/contribution to your research project on conversion of PFAD into diesel range hydrocarbons.

We also acknowledged that this research proposal is currently under the evaluation and it may eligible to get funding from Ministry of Education under FRGS grant scheme.

3. Last but not least, we are glad to participate in this research project which benefits for the Oil Palm Industry. Please do not hesitate to contact us if you need any further assistance.

Yours faithfully,

Kiu Kwong Chiang Controller (Operations)

Our Ref : IAN/PT/2022/049 Date : 21.12.2022

University Putra Malaysia 43400,UPM Serdang, Malaysia

By email

Attn: Dr. Sivasangar,

Re: Patent Application for Method For Using A Heterogenous Catalyst For Preparing Green Diesel By Using Hydrodeoxygenation (HDO) Reaction of Fatty Acids Feedstock

We refer to the above matter.

- Kindly find attached herewith the following documents for your kind perusal: -
 - (a) [Final] Patent Specification (Word File); and
 - (b) [Final] Patent Drawing (PDF File).

2. If the patent specification and drawings are acceptable for us to proceed with filling of the patent application in Malaysia, kindly confirm your decision by <u>executing the Patent Confirmation Sheet</u> in page 2 of this letter and return to us the duplicate copy of this letter for our record and further action before or by <u>23.12.2022</u>.

Thank you.

1.

Yours sincerely,

Tan Chua

Ian Intellectual Property Sdn. Bhd.

Research Team

Dr Sivasangar Seenivasagam (PutraCAT, UPM) Project Leader

Prof Datuk Dr Taufiq Yap Yun Hin (PutraCAT, UPM)

Dr Mohd Lokman Ibrahim (UITM)

Dr Lee Hwei Voon (Nanocat, UM)

With Knowledge We Serve

Catalyst composition (XRF& ICPOES)

		Elements_surface_analysis (wt%)							
Catalysts	Theoretical	XRF	ICPOES	1	EC	X			
	I	Ni		C	0	Cr	Ni		
MIL-101-Cr				41.1	38.2	20.7			
P-MIL-101-Cr	r — — —			54.3	17.5	28.2			
P-4%Ni/MIL-101-Cr	5	4.5	4.3	50.7	19.1	27.9	2.3		
P-8%Ni/MIL-101-Cr	10	8.6	8.4	46.1	20.8	27.3	5.8		
P-14%Ni/MIL-101-Cr	15	14.3	14.1	47.3	16.5	25.9	10.3		
P-25%Ni/MIL-101-Cr	25	26.1	25.8	45.8	14.3	23.5	16.4		

Table 2 Elemental composition of the catalysts.

✓ The content of added elements (dopants) in MIL-101-Cr based catalyst are consistent with the theoretical values.

Physicochemical properties(XRD)

Fig.8. X-ray diffractograms of the catalysts .

 \checkmark The catalyst shows the presence of Cr₂O₃ and Ni metal.

Catalyst composition (FTIR)

✓ Addition of Ni did not alter the presence Cr₂O₃ peaks and a new peak correspond to Ni appears in the spectrum

Analysis of used catalysts - 25%Ni/P-MIL-101

Fig. HRTEM-EDX analysis for fresh and used P-25Ni%-MIL-101 after 8th runs.

The Ni loading is too high and Ni composition started drop from 25% to 18.3%.

Catalyst composition and thermal properties

Fig . Thermal stability of pristine and pyrolyzed MIL-101.

 \checkmark The weight of catalyst after pyrolysis didn't change prior to 500°C, so it can satisfy the experiment's requirements.

Hydrocarbon Product Quality

✓ All oxygen-containing functional groups were removed.

HDO Reaction Mechanism

Possible reaction paths of hydrodeoxygenation

Fig. Possible reaction paths of hydrodeoxygenation (HDO).

Global Biofuel Market Analysis

PRECEDENCE Research BIOFUELS MARKET SIZE, 2020 TO 2030 (USD BILLION) \$ 201.21 \$ 185.41 \$ 172.76 \$ 161.21 \$ 150.67 \$ 141.00 \$ 132.13 \$ 123.98 \$ 116.46 \$ 109.96 \$ 120.60 2023 2024 2025 2026 2027 2028 2029 2030 2022

> Biofuels Market Share, By Fuel Type, 2020

Fuel Type	2020 (%)
Biodiesel	28.7%
Ethanol	71.3%

IEA, Biofuel demand growth and share of total demand by fuel, 2021-2026, IEA, Paris <u>https://www.iea.org/data-and-statistics/charts/biofuel-demand-growth-and-share-of-total-demand-by-fuel-2021-2026</u>.

With Knowledge We Serve

Optimization deoxygenation study

Palmitic acid

Green diesel

Table 5. The catalytic effect of different reaction conditions in HDO

	Catalyst	Feedstock	Conditions	Catalyst loading (wt%)	Conversion (%)	Selectivity of paraffins (%)	
1	14 wt% Ni/P-MIL-101	Palmitic acid	<mark>3 h, 400 °C, 3MPa H₂</mark>	<mark>5</mark>	<mark>100</mark>	<mark>100</mark> ٦	-
<mark>2</mark>	14 wt% Ni/P-MIL-101	Palmitic acid	<mark>2 h, 400 °C, 3MPa H₂</mark>	<mark>5</mark>	<mark>100</mark>	100	Difforont time
<mark>3</mark>	14 wt% Ni/P-MIL-101	Palmitic acid	<mark>1 h, 400 °C, 3MPa H₂</mark>	<mark>5</mark>	<mark>100</mark>	<mark>100</mark>	Different time
4	14 wt% Ni/P-MIL-101	Palmitic acid	2 h, 400 °C, 2MPa H ₂	5	100	99.7	
5	14 wt% Ni/P-MIL-101	Palmitic acid	2 h, 400 °C, 1MPa H ₂	5	100	100	
6	14 wt% Ni/P-MIL-101	Palmitic acid	2 h, 400 °C, 1MPa H ₂	3	100	100	
7	14 wt% Ni/P-MIL-101	Palmitic acid	1 h, 400 °C, 1MPa H ₂	3	99.7	99.7	
8	14 wt% Ni/P-MIL-101	Palmitic acid	3 h, 350°C, N ₂	3	96.5	95.7	

Commercial Technologies, Plants and Key Players

Company	Product	Production capacity / Year (Million tons)	Technology/Process	Plant location
	Renewable diesel	0.2	Bio-Synfining	USA
eni	Green diesel	0.5 to 1	Ecofining [™] process	Italy
	Renewable diesel	0.4	Ecofining [™] process	USA
UPM	BioVerno renewable diesel	0.1	HydroFlex™	Finland
File	Preem evolution diesel	Unknown	HydroFlex™	Sweden
CETANE	Renewable diesel	Unknown	Hydrotreating	USA
NESTE	Neste MY renewable diesel	2.6	NEXBTL process	Finland, Holland, Singapore
TOTAL	Renewable diesel	0.5	Vegan® technology by Axens	France
(ARAir Fuels	Renewable jet fuel	0.15	UOP Renewable Jet Fuel Process	USA
PETRIXO OIL & GAS	Renewable jet fuel	0.5	UOP Renewable Jet Fuel Process	UAE

Currently, over 5.5 billion liters of renewable diesel is produced globally and is forecasted to grow up to 13 billion liters in 2024