

Malaysian Palm Oil Board
Ministry of Plantation and Commodities

REVOLUTIONIZING OF
MALAYSIA PALM OIL MILLING INDUSTRY:
CURRENT STATUS, CHALLENGES,
OPPORTUNITIES AND WAY FORWARD

Datuk Dr. Ahmad Parveez Ghulam Kadir Director – General Malaysian Palm Oil Board

Palm Oil Milling Technology Exhibition & Conference (POMtec) 8 - 9 August 2023 | Imperial Hotel, Miri, Sarawak

PRESENTATION OUTLINE

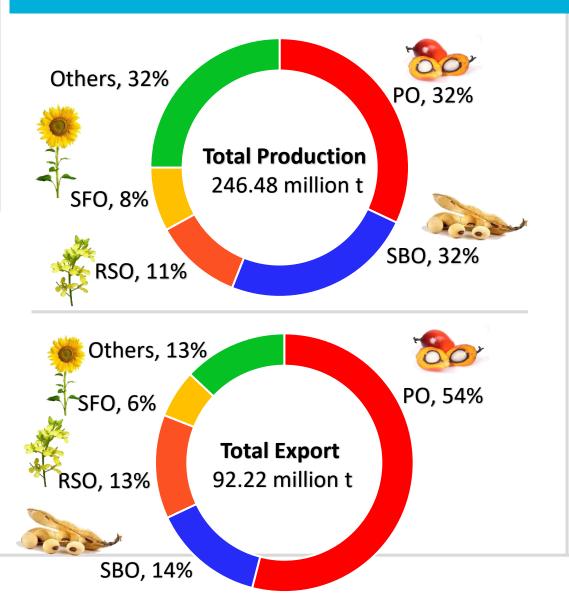
Overview of Malaysian & Sarawak palm oil industry

Current status of the palm oil milling industry & technology

Issues & challenges

Opportunities & way forward

Conclusion


03

04

05

06

MALAYSIA'S PALM OIL CONTRIBUTION TO THE GLOBAL OILS AND FATS 2022

- 5th largest producer of oils and fats
- **8.4%** of total global oils and fats production
- 2nd largest exporter of oils and fats
- 17.1% of total global oils and fats export
- **15.72 million tonnes** of total global oils and fats export

MALAYSIA'S POSITION TO THE GLOBAL PALM OIL TRADE 2022

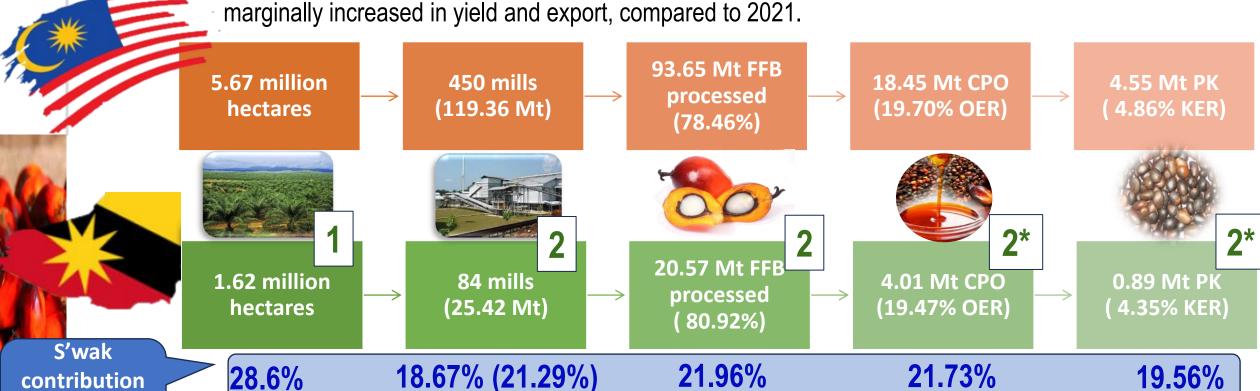
Total Global Production 78.23 million tonnes

Total Global Export 50.10 million tonnes

2nd largest producer and exporter of palm oil

23% of total global palm oil production

18.45 million tonnes CPO production


31% of total global palm oil trade

15.72 million tonnes palm oil trade

STATUS of MALAYSIA & S'WAK PALM OIL INDUSTRY 2022

The Malaysian palm oil industry experienced **better performance** in terms of price with marginally increased in yield and export, compared to 2021.

to the

country's PO

Sarawak palm oil industry – the country's largest oil palm planted areas & 2nd largest producer

Mill performance: Bottom 3 and the lowest of OER % and KER%, respectively in the country

SARAWAK PALM OIL MILLS IN 2022 (BY DISTRICT) No of mills: 15 No of mills: 13 84 POMs - 25.42 Mt Capacity (tonnes): Capacity (tonnes): 4,714,000 4,121,000 (80.92% utilization rate) LIMBANG No of mills: 2

No of mills: 1 Capacity (tonnes): P&C No of mills: 7 MIRE Capacity (tonnes): 2,150,000 No of mills: 2 MUKAH Capacity (tonnes): P&C BINTULU No of mills: 3 SIBU Capacity (tonnes): SARIKE KAPIT P&C SAMARAHAN BETONG KUCHING

No of mills: 5

1,260,000

Capacity (tonnes):

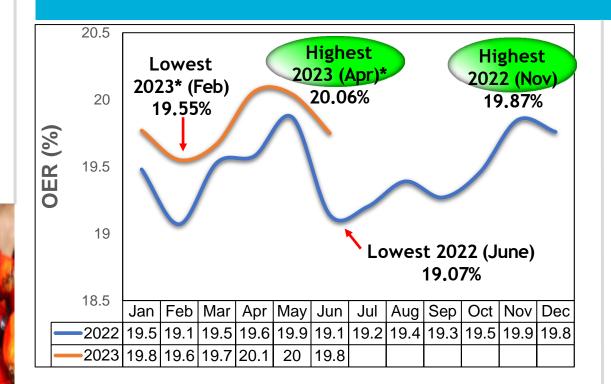
SRI AMAN

Capacity (tonnes): P&C

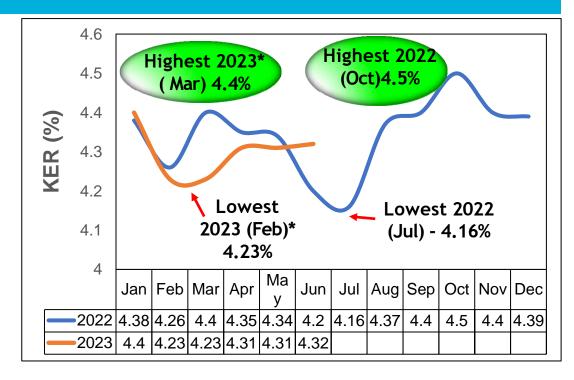
No of mills: 25 Capacity (tonnes):

7,538,000

No of mills: 7 **Capacity (tonnes):** 2,668,000


No of mills: 4 Capacity (tonnes):

894,000



SERIAN

PERFORMANCE OF PALM OIL PROCESSING IN SARAWAK

- Average OER in Swak's POMs (2022) 19.47 %
- BOTTOM 3 among other states in Malaysia

- Average KER in Swak's POMs (2022) 4.35 %
- The LOWEST in the country

CURRENT STATUS OF PALM OIL MILLING PROCESS & TECHNOLOGY

 Based on Mongana Report (published in 1950's)

> No major transformation/ low process integration using the latest technological innovations

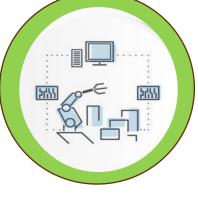
- Low/unskilled foreign labour
- Semi-continuous/ semi automated process

- Mechanical process
- Oil losses
- low oil-losses recovery

- High water/ resources usage
- Inefficient waste/ resource/ utility mgmt.

CONVENTIONAL PROCESS & TECHNOLOGY

WHERE ARE WE RIGHT NOW?


INDUSTRY 1.0

Mechanical production equipment powered by steam

INDUSTRY 2.0

Mass production assembly line via electrical energy & labor

INDUSTRY 3.0

Automated production using electronics & IT

INDUSTRY 4.0

Intelligent production incorporated with IoT, cloud technology & big data

The palm oil milling technology currently in 2nd and 3rd industry revolution (Semi-continuous & semi-automated process)

CHALLENGES IN PALM OIL MILLING INDUSTRY

renewable energy sustainable development automaton yield net zero labour shortage pollution degradation deforestation sustainable development automaton yield net zero labour shortage carbon neutrality climate change environmental environmental process safety productivity ghg emissions carbon footprint global warming circular economy carbon offsetting habitat loss

CHALLENGES IN PALM OIL MILLING INDUSTRY

Palm oil milling industry is facing an uphill battle with challenges associated with process efficiency, safety, quality and sustainability

SHORTAGE OF LABOUR PROCESS EFFICIENCY WASTE
MANAGEMENT
& REGULATORY
COMPLIANCE

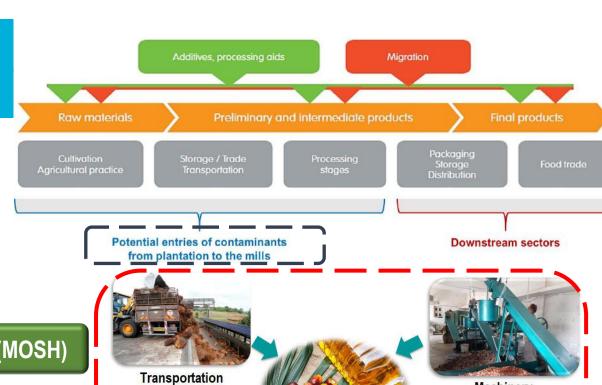
FOOD SAFETY & QUALITY

MAJOR ISSUES ON ENVIRONMENTAL REGULATIONS COMPLIANCE

- BOD 20/50 ppm sensitive areas
- Proposed new monitoring parameters by the DOE odour & color
- Exemption of mandatory biogas implementation in Swak POMs requesting for throughput expansion to be expired by 2023

- Clean Air Regulation 2014 (CAR 2014) particulate emissions < 150 mg/Nm³ & commitment to install air pollution control system (APCs)
- High CAPEX

- Particulate emissions from EFB incinerator to comply to CAR 2014
- Garis Panduan Pelan Pengurusan Tandan Kosong Sawit (2021) leachate issue


FOOD QUALITY & SAFETY ISSUES

3-monochloropropane-1,2-diol esters (3-MCPD) (max limit 1.25 ppm)

Glycidyl esters (GE) (max level 1ppm)

Mineral oil saturated hydrocarbons (MOSH)


Mineral oil aromatic hydrocarbons (MOAH)

Palm Oil Mill

Max level (applicable 01.07.2020)

Oil leakage

MOAH

Palm oils and Coconut oils

< 20 mg/kg oil < 2 mg/kg oil

13 mg/kg oil <LOQ mg/kg oil*

Other vegetable oils and

Animal Fats including Fish oils

Infant Grade ingredients **ALARA

< 10 mg/kg oil

< 2 mg/kg oil

HOW TO ADDRESS ALL THESE ISSUES & CHALLENGES?

- Turning these into opportunities to revolutize palm oil milling industry
- Requires a comprehensive tool that would uplift the productivity, efficiency, cost-effectiveness and safety of the palm oil milling industry as a whole
- IR 4.0 is seen as a vital tool in driving the industry to embrace a more sustainable future.

OPPORTUNITY & WAY FORWARD TO REVOLUTIONIZE PALM OIL MILLING INDUSTRY

WHY EMBARK ON REVOLUTIONIZING PALM OIL MILLING INDUSTRY?

How this can be done:

NEW PALM OIL MILL CONCEPT is needed by

integrating all the new-efficient technologies & processes with regulatory and quality compliance supported by AI, IOT & automation

CURRENT TECHNOLOGY ADVANCEMENT IN PALM OIL MILLS **TOWARDS IR4.0**

FFB RECEPTION

Currently at IR2.0 with the use of hydraulic ramp gate and conveyor

STERILISATION STATION

Currently at IR3.0 with the use of PLC and SCADA system to automate sterilization process

STERILISER TECHNOLOGY ADVANCEMENT

Ready for IR 4.0

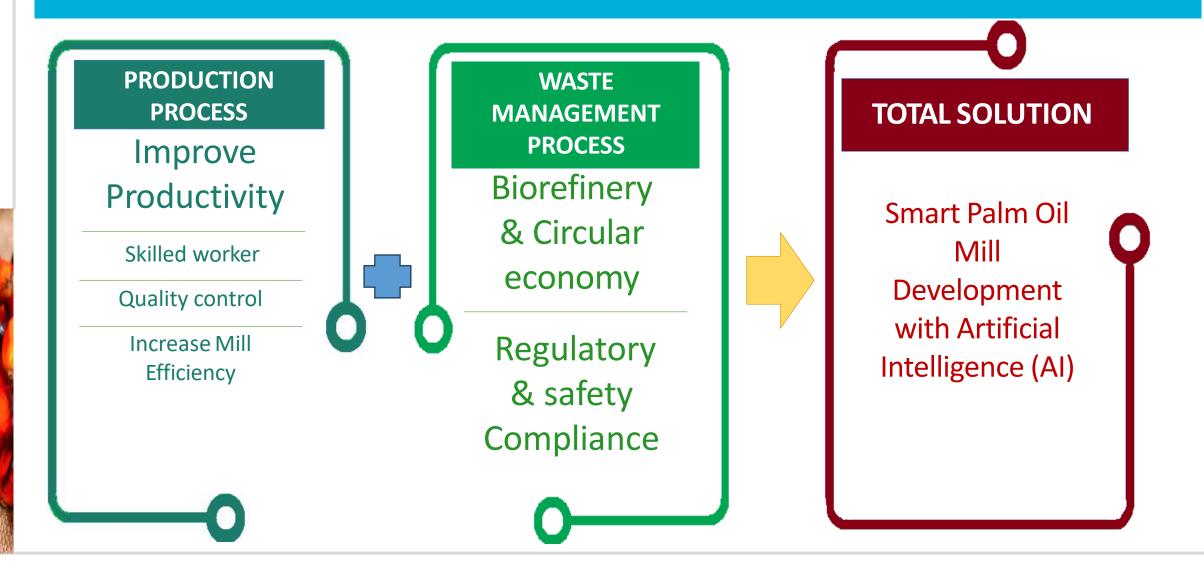
Conventional sterilizer

Continuous Sterilizer

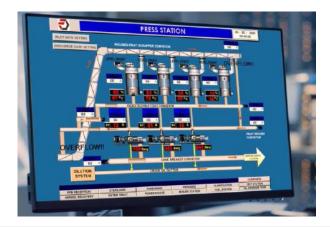
Vertical sterilizer

Tilting sterilizer

PRESS STATION & OIL ROOM


Currently at IR3.0 with automatic dilution control and could be improved to IR4.0 to improve oil recovery

SUSTAINABLE PALM OIL PROCESSING VIA SMART PALM OIL MILL



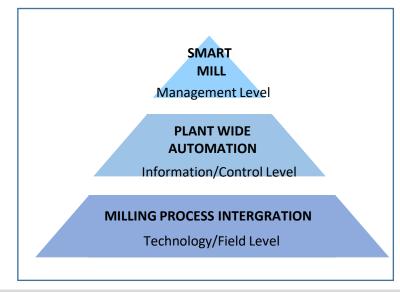
SMART PALM OIL MILL DEVELOPMENT WITH ARTIFICIAL INTELLIGENCE (AI)

The aim of the smart mill is to addressing current challenges such as:

Current issues	Target to achieve
Quality of crude palm oil	 Chloride < 2 ppm FFA < 5 % DOBI > 2.3
Smoke and effluent pollution to the environment	 Particulate matter < 150 mg/Nm³ Effluent BOD < 20 ppm
High labour requirement in the palm oil mill	<10 technical work force in 30 t/h mill
Ruggedness and inconsistency in FFB grading	Automated grading system
High oil losses to effluent pond	0.3 % oil losses per FFB processed
High power and water resources requirement	Reduce power consumption by simplifying milling process and water dilution requirement

DEVELOPMENT OF SMART PALM OIL MILL

- MPOB in collaboration with FXA Solutions Sdn. Bhd. to jointly design and construct a a 30 t/hr smart palm oil mill with artificial intelligence (AI) system and zero effluent discharge technology.
- The smart mill will be located at MPOB Plasma Keratong, Pahang.
- Expected to be commissioned in 2025



SMART mill concept

Identify process approaches to be integrated with IR4.0:

- Big data collections and analysis
- Internet of Things (IoT) for communication
- Artificial Intelligence (AI) for trained decision making (Programable logic control (PLC), fuzzy logic, neuron network)
- Comply with all regulatory and quality requirements
- Reduced un-skill labour dependency

SMART PALM OIL MILL- KEY FEATURES

- Fully automated
- Real time monitoring
- Reduces manpower & increased skilled local worker
- Process monitoring
- Quality analysis & control
- Data driven report & record
- Efficient & sustainable

MAJOR PROSPECTS OF IR4.0 IN PALM OIL MILL

PROCESS & QUALITY CONTROL

RESOURCE & WASTE MANAGEMENT,
MAINTENANCE & REGULATORY COMPLIANCE

Automatic determination of FFB ripeness

Premium oil segregation using NIR online system

Air pollution control & Continuous emission monitoring system

Predictive maintenance

Online monitoring of oil losses at press station

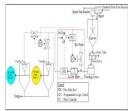
OER-based algorithm & mass balance automation

Steam & energy management

POME treatment & zero discharge system

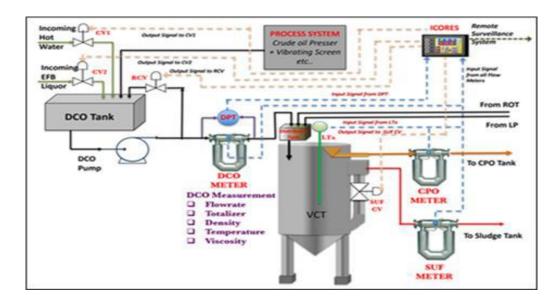
POTENTIAL OF IR 4.0 APPLICATIONS IN PALM OIL MILLS

Automatic Determination of FFB Ripeness



Near Infrared (NIR) system in POM

- Premium oil segregation
- Automated crude oil dilution
- Rapid oil losses monitoring



Source: Fatahyah et al. 2017,

Gerhardt Malaysia, BUCHI Labortechnik

OER Based Algorithm & Mass Balance Automation

- Automated process control for oil room
- Determines mass rate
- Analyses crude oil composition
- Online measurement of process parameters

Source: Hady Munsif et al., (2021)

METHANE AVOIDANCE TECHNOLOGIES TOWARDS SUSTAINABLE PALM OIL PRODUCTION

Biogas from POME contributes about 50% of total GHG emissions to CPO production

MITIGATION STRATEGIES:

1.0 POME utilisation

2.0 POME pretreatment

3.0 POME elimination via evaporation process

Effective 1st Jan 2014 - Mandatory implementation of biogas plant / methane avoidance technologies applies to all new mills and existing mills requesting for throughput expansion (>270,000 t FFB /year)

***Source: POMEVap – www.alfalaval.com

BIOREFINERY CONCEPT FOR CIRCULAR ECONOMY IN PALM OIL MILLS

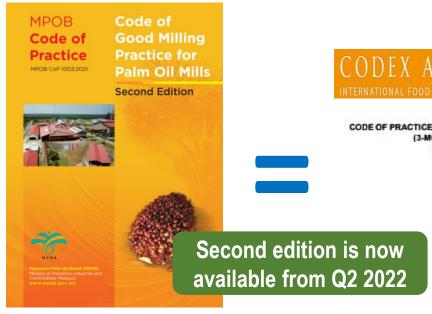
- Optimizing resource recovery from milling by-products (biomass & POME) for circular economy
- Improves sustainability and economic performance of palm oil milling industry
- Focuses on low hanging fruit approaches

WAY FORWARD ON FOOD SAFETY AND QUALITY

Reviving Malaysian Standards (MS) related to palm oil safety and quality

Malaysian Government has allocated substantial amount of research grant for strategizing the mitigation of 3-MCPDE and GE at the mills and refineries

Chloride removal in CPO at the mills and refineries



Process to reduce the level of 3-MCPDE and GE at the refineries

"...Inclusion of 3-MCPDE and GE in Malaysian Standards (MS) for palm oil and palm kernel oil products and total chloride content in MS for crude palm oil..."

REVISION OF MPOB CODE OF GOOD MILLING PRACTICE FOR PALM OIL MILLS

CODE OF PRACTICE FOR THE REDUCTION OF 3-MONOCHLOROPROPANE-1,2- DIOL ESTERS (3-MCPDEs) AND GLYCIDYL ESTERS (GEs) IN REFINED OILS AND FOOD PRODUCTS MADE WITH REFINED OILS

CXC 79-2019

Adopted in 2019.

Strengthening of MPOB Code of Good Milling Practice for

Palm Oil Mills coincides with Code of Practice for the Reduction 3-MCPDE

and GE in Refined Oils and Products Made from Refined Oils Especially for

Infant Formula and Makanan Selamat Tanggungjawab Industri (MeSTI) scheme...

MESYUARAT KELIMA BELAS

MAJLIS KESELAMATAN MAKANAN DAN PEMAKANAN KEBANGSAAN (MKMPK)

27 APRIL 2021

CONCLUSION

