BUNCHES WITH DIFFERENT FRUIT SET

Good Fruit set = 71.69%

Moderate Fruit set = 31.13%

Poor Fruit Set < 10%

POLLINATING INSECTS OF OIL PALM IN AFRICA

Coleoptera

- 1. Elaeidobius kamerunicus
- 2. E. subvittatus
- 3. E. plagiatus
- 4. E. singularis
- 5. E. bilineatus
- 6. Prosoestus sculptilis
- 7. P. minor
- 8. Microporum congolense
- 9. M. dispar
- 10. Carpophilus nitidus
- 11. Atheta burgeoni

Diptera

- 1. Muscidae
- 2. Ceratopogonidae
- 3. Syphidae
- 4. Dolichopodidae

Hymenoptera

- 1. Apoidae
 - Apis mellifica
- 2. Encryrtidae
- 3. Diapriidae

Desmier de Chenon (1981). IRHO. La Me Station, Ivory Coast

COMPOSITION OF POLLINATING WEEVIL ON ANTHESISING INFLORESCENCES

2. E. kamerunicus

3. E. singularis

4. E plagiatus

5. P. minor

■ 6. P. sculptilis

■ 7. M. congolensis

8. M. dispar

🛚 9. A. burgeoni

POPULATION OF OIL PALM POLLINATING WEEVIL ON MALE AND FEMALE INFLORESCENCE

kou Herve K et al., (2013). Influence of the growing area on oil palm inflorescence insect population. *Journal of Research in Biology* 3(4): 940-946

ADVANTAGEOUS TRAITS OF POLLINATING WEEVIL Elaeidobius kamerunicus

Research by R A Syed in Cameroon in 1977

- 1. Short life cycle & high reproductive rate
- 2. Abundance of species on male inflorescence: E.k > E.s > E.p
- 3. Abundance of species in dry season: E.k > E.s > E.p
- 4. Abundance of species in wet season: E.k > E.s = E.p
- 5. Abundance of species on all ages of palm: E.k > E. p > E. s
- 6. Searching ability: E.s > E.k > E.p
- 7. Pollen carrying capacity: E.k (150p/a) >E.p & E.s (15p/d)
- 8. Host-specificity: E.k restricted to only oil palm

-

Syed in RA (1979).

INTRODUCTION OF POLLINATING WEEVIL

To improve FFB yield and reduced labour cost of intensive assisted pollination

In July 1980, a batch of 1044 pupae of *E. kamerunicus* arrived from London to Kuala Lumpur. Intensive Quarantine (*Syed 1982, Kang & Zam, 1982*)

- · Feb 1981. Mamor Estate, Kluang, Johor (Morning).
- March 1981. Pamol Estate, Sandakan, Sabah (Afternoon).
- Feb 1982. released in most estates in Malaysia
- June 1981. Papua New Guinea
- Dec 1981. Thailand
- Mac 1983, Indonesia

EFFECT OF POLLINATING WEEVIL ON BUNCH COMPONENTS

No	BUNCH COMPONENT	PAMOL ESTATE		MAMOR ESTATE	
		Before (Mac-Jun 1981)	After (Dis81-Mac82)	Before (Mac-Jun 1981)	After (Dis81-Mac82)
1	Bunch weight (kg)	23.5	26.9	10.7	13.6
2	Fruit set (%)	53.4	71.2	47.8	76.0
3	Fruit/Bunch (%)	60.4	64.4	60.4	68.3
4	Mesocarp/Fruit (%)	74.8	70.6	76.5	74.8
5	Oil/Bunch (%)	22.0	21.5	22.7	24.9
6	Kernel/Fruit (%)	9.1	11.5	7.8	10.2
7	Shell/Bunch (%)	7.1	8.0	15.7	15.0
8	Kernel/Bunch (%)	5.5	7.4	4.7	7.0
9	Fruit weight (g)	11.2	7.7	13.1	8.9

Syed (1994)

POPULATION OF POLLINATING WEEVIL FROM 1983 TO 1989

REOCCURRENCE OF POOR POLLINATION

- 1. Since 1980 and 1990 in Sabah.
- In 1993 in Sabah, poor fruit set expected due to climate, high rainfall.
- In 1998 in Sabah, most plantation affected by poor fruit set.
- 4. In 2013, low OER in coastal mills in Sarawak, due to poor pollination?.
- 5. In 2016, a national survey, more than 57,500 ha affected by poor pollination.

MPOB (2016)

POSSIBLE FACTORS AFFECTING POPULATION OF POLLINATING WEEVIL

- 1. Climate (high rainfall) reduced activities of the weevil
- Natural enemies predators & pathogens (nematodes) reduced life span, population & weak generation
- 3. Narrow genetic base reduced fecundity, life span, weak generation,
- 4. Infestation pests (bunch moth & rat) competition
- 5. Usage of chemicals insecticides, herbicides, fungicides etc
- 6. Pollen viability due to boron deficiency ??
- 7. High yielding planting materials with high sex ratio Clonal material
- 8. Less attractive to new planting materials Less concentration of attractant (estragole)

RELATIONSHIP BETWEEN WEEVIL POPULATION, RAINFALL AND FRUIT SET IN SABAH

From Mohd Rezuan et al., (2013)

EFFECT OF RAINFALL ON WEEVIL POPULATION AND FRUIT SET

EFFECTS OF NATURAL ENEMIES ON POPULATION OF WEEVIL

- 1. Predators Birds (Pycnonotus goiavier), squirrels and rats*
- 2. Spiders Gasteracantha hasselti*
- 3. Insects Cosmolestes picticeps, Cantaconidae sp*
- 4. Pathogens Nematode (Poinar et al., 2002)

Damage by rat

Hemiptera predator (C. picticeps)

Yellow-vented Bulbul (Pycnonotus goiavier)

Parasitic nematode (Elaeolenchus parthenonemo

* From Liau, (1984)

NEMATODE INFESTATION IN MALAYSIA

Locality

- 1. Lahad Datu (Sabah).
- 2. Lawas (Sarawak).
- MPOB Keratong (Pahang).
- Hulu Paka (Terengganu).
- MPOB UKM (Selangor).
- Ladang Bukit Benut (Johor)

2004 - 2010, Infestation of nematodes ranging from 0.6-28%

Low incidence of nematode infestation on weevils did not affect weevil population & the fruit set. The FS level remained above 50%.

From Zulkifli et al., (2012)

EFFECTS OF CHEMICAL AND BIOLOGICAL AGENT ON POLLINATING WEEVIL

Active ingredient	% Mortality		
Active ingredient	Adult*	Immature**	
Cypermethrin	100	100	
2. B. thuriengiensis	0	No effect	
3. B. bassiana	8-58	No effect	
4. M. anisopliae	22-37	No effect	

^{*} Mortality at 6 days after treatment,

^{**} newly emerged adults from treated spikelet

ANNEYER SARY

From Ramle et al., (1998; 1999)

DISTRIBUTION OF PEST POPULATION IN SABAH AND SARAWAK

Male inflorescence attack by rat

Larvae of E. kamerunicus in male inflorescence

Post anthesised male inflorescence

Damage by T. rufivena

ASSOCIATION BETWEEN FRUIT SET AND INFESTATION OF PESTS

Infestation of pest	Estates with fruit set problem (N 69)		Estates without fruit set problem (N 50)	
	n	%	n	%
Bunch moth	37	54.0	7	14
Rats	59	86.0	34	68.0

OTHER FACTORS

- Pollen viability
 Other plants Boron deficiency reduced pollen gemination and male sterility.
 Oil palm viability reduce due to climate
- High yielding planting materials
 Clonal materials have high sex ratio (more female, less male flowers)
- Less attractive of new planting materials
 Flowers Less concentration attractant compounds

Geminated & none geminated of oil palm pollens

Anthesising of male inflorescence

RECOMMENDATION

- Young badly affected areas (<30%FS or less than 2 male flowers/ha).
 - Hatch and carry techniques
 IMPACT
 Increase the fruit formation up to 30% and weight of fresh fruit bunches up to 8% (Eko Prasetyo & Susanto, 2015)
- High infestation of pests, rats & bunch moth
 Application of non-toxic products or good agronomic practices which are safer to pollinating weevil.
- 3. Planting of palm with high female traits.
 - · Integrated with palms that have more male flowers.
 - · Breeding program in producing palm with stronger male traits.

RECOMMENDATION

- 4. Research programs in molecular aspects of pollinating weevil
 - Genetic marking or profiling pollinating weevils from wider populations for greater understanding the relationship among population.
 - Assist in reintroduction program of weevil from strong population to locality with weaker weevil population within countries or between continents.
- 5. In countries that rely on one species, in-depth research programs on the following are urgently needed
 - · Population dynamic, behaviour and biology of pollinating weevil
 - Susceptibility of current weevil population against parasitic nematodes.
 - Study on ecology, biology and distribution of parasitic nematodes.

CONCLUSIONS

- Fruit set and production of FFB are closely related to pollinating weevil.
- 2. Pollinating weevil has significant contribution to oil palm industry.
- Pollinating weevil is affected by various factors climate, infestation of pests, application of chemicals, genetic, pollen viability & high yielding planting materials.
- 4. Field management should implemented good agricultural practices to improve weevil population as well as FFB yield.
- 5. Research on key important aspects related to pollinating weevil as well as parasitic nematode are urgently needed.

