

Sarawak Oil Palm Plantation Owners Association (SOPPOA)

Siaw Ting Chuan¹ Wong Guan Xhuan²

Ta Ann Holdings Berhad¹

Tropical Peat Research Laboratory Unit² (Chief Minister's Department)

Effect of Nitrogen Fertilization on Yield of Oil Palm in Tropical Peat

Graduate School of University Putra Malaysia

OIL PALM - GOLDEN CROP

TROPICAL PEATLAND

Peat soils formation:

Accumulation of organic matter

Consist of partly or undecomposed wood pieces

- ✓ 1.6 million hectares of tropical peatland
- Common depth range from 5m to 10m
- Three main types of peat forest:
 - i. Mixed peat swamp forest
 - ii. <u>Alan forest</u>
 - iii. Padang Paya forest

NITROGEN IN TROPICAL PEAT SOIL

Can be supplied to palms through mineralization of organic matter but depend on several factors

- 🗸 pH
- C:N ratio
- temperature
- Moisture

In Alan forest soils,

- High lignin content
- Iow mineralization rates

IMPORTANCE OF NITROGEN

NITROGEN DEFICIENCY

Commonly found under these conditions:

- Poorly drained soils or waterlogged areas
- High weed density

- Poor soil physical characteristics
 - low bulk density
 - poor root development

FLOODING / WATERLOGGED

STUNTED & FLAT TOP APPEARANCE

HIGH WEED DENSITY

ALAN BATU AREA

Corrective measures.....

1) Drainage improvement

Open additional field drain

Example: from 4 in 1 to 2 in 1 or soil mounding

2) Proper water management

- Maintain water level at 50-75cm

3) **Destumping and compaction**

- Improve soil bulk density and root development

4) Maintain a weed free palm circle all year round

GOOD DESTUMPING & COMPACTION

GOOD WATER LEVEL MANAGEMENT

NITROGEN FERTILIZER STUDY

- Young mature palms
 - Age : 2004 planting, 5th-8th YAP
 - Study site : Alan forest in Sibu, Sarawak
 - Planting density: 153 palms /ha
 - Data collection : 2009-2012
 - Annual rainfall: 2500-3500mm
 - Water level : 50-75cm

ANNUAL WATER LEVEL AND RAINFALL

Year	Rainfall (mm)	Water level (cm)
2009	3137	59.5
2010	3246	55.2
2011	2897	61.1
2012	3286	59.2

OBJECTIVE

To investigate the effects of different **nitrogen rates** on oil palm in terms of,

- i) Total and available nitrogen in soil
- ii) Leaf nutrient composition
- iii) Vegetative growth
- iv) Oil palm yield.

available N

FERTILIZER APPLICATION

Nitrogen source

- Ammonium sulphate ((NH₄)₂SO₄)
- Applied evenly within a 2m circle radius

4 treatments	i) 0 kg SOA (Control)	ii) 1kg SOA (N1)
evaluated	iii) 2kg SOA (N2)	iv) 4kg SOA (N4)

# 1.75 kg P	# 5.2 kg K
# 1.75 kg Mg	# 0.15 kg Zr
# 0.15 kg Cu	# 0.15 kg B

SOIL PROPERTY

Soil depth (cm)	Treatment	рН	Loss of ignition	Total N	Ammonium
	Control	3.57	97.2	2.0	51.0
0.25	N1	3.59	97.3	1.9	48.7
0-25	N2	3.58	97.4	1.9	46.6
	N4	3.49	97.3	2.0	57.5
	Control	3.45	98.1	1.8	42.9
25 -50	N1	3.43	98.2	1.8	43.1
	N2	3.39	98.3	1.7	40.4
	N4	3.37	98.4	1.8	46.8

SOIL AVAILABLE N - AMMONIUM

LEAF NUTRIENT COMPOSITION

Leaf	N fertilizer rate				
nutrient	Control	N1	N2	N4	
N (%)	2.58	2.59	2.65	<u>2.79</u>	
P (%)	0.16	0.16	0.16	0.17	
K (%)	1.00	0.99	1.07	1.06	
Mg (%)	0.26	0.25	0.26	0.25	
Ca (%)	0.52	0.51	0.48	0.44	

LEAF NITROGEN (N)

LEAF PHOSPHORUS (P) & LEAF POTASSIUM (K)

VEGETATIVE GROWTH MEASUREMENTS

	N fertilizer rate				
Paim growth	Control	N1	N2	N4	
Leaf area (m ²)	5.88	6.07	6.14	6.29	
Leaf area index	3.25	3.36	3.45	3.52	
Frond dry weight (kg)	2.05	2.22	2.21	2.28	

LEAF AREA

& FROND DRY WEIGHT

LEAF AREA INDEX - N4 OVER CONTROL

Treatment	2011	2012	Mean
Control	3.27	3.60	<u>3.44</u>
N1	3.43	3.78	3.60
N2	3.49	3.89	3.69
N4	3.89	4.03	<u>3.96</u>

N4 / Control x 100% = 115.1%

Leaf area index is <u>15.1%</u> higher than "no fertilizer application"

OIL PALM YIELD

Palm Yield	Control	N1	N2	N4
Bunch number	16.40	16.20	17.50	17.70
Average bunch weight (kg/bunch)	6.98	7.33	7.09	7.70
FFB (tan/ha/year)	17.30	17.60	18.90	<u>20.30</u>

OIL PALM YIELD ~ 2009-2012

Bunch number

Average bunch weight

OIL PALM YIELD ~ 2009-2012

BUNCH NUMBER

8AUERAGE BUNCH WEIGHT

FFB - N4 OVER CONTROL

Treatment	2011	2012	Mean
Control	19.2	19.8	<u>19.5</u>
N1	20.2	18.2	19.2
N2	22.8	19.6	21.2
N4	26.1	21.1	<u>23.6</u>

N4 / Control x 100% = 121%

FFB is 21% higher than "no fertilizer application"

The highest oil palm yields and growth were attained at N4 with

- -Larger leaf area
- -Higher frond dry weight
- -Higher leaf N concentration

HIGH YIELDING PALM

Acknowledgements

Tropical Peat Research Laboratory Unit (Chief Minister's Department)

Dr. Lulie Melling

Graduate School of University Putra Malaysia

Prof. Madya Dr. Ahmad Husni Dr. Shamsuri Abdul Wahid

